
Karen Anderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8824343/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanism and fidelity of HIV reverse transcriptase Journal of Biological Chemistry, 1992, 267, 25988-25997.	3.4	446
2	Mechanism and fidelity of HIV reverse transcriptase. Journal of Biological Chemistry, 1992, 267, 25988-97.	3.4	375
3	Potent Noncovalent Inhibitors of the Main Protease of SARS-CoV-2 from Molecular Sculpting of the Drug Perampanel Guided by Free Energy Perturbation Calculations. ACS Central Science, 2021, 7, 467-475.	11.3	182
4	Identification of 14 Known Drugs as Inhibitors of the Main Protease of SARS-CoV-2. ACS Medicinal Chemistry Letters, 2020, 11, 2526-2533.	2.8	176
5	Current Perspectives on HIV-1 Antiretroviral Drug Resistance. Viruses, 2014, 6, 4095-4139.	3.3	129
6	Computationally-Guided Optimization of a Docking Hit to Yield Catechol Diethers as Potent Anti-HIV Agents. Journal of Medicinal Chemistry, 2011, 54, 8582-8591.	6.4	122
7	Insights into the Molecular Mechanism of Mitochondrial Toxicity by AIDS Drugs. Journal of Biological Chemistry, 2001, 276, 23832-23837.	3.4	119
8	Serine modulates substrate channeling in tryptophan synthase. A novel intersubunit triggering mechanism. Journal of Biological Chemistry, 1991, 266, 8020-33.	3.4	114
9	Data publication with the structural biology data grid supports live analysis. Nature Communications, 2016, 7, 10882.	12.8	113
10	Intracellular transport of class I MHC molecules in antigen processing mutant cell lines. Journal of Immunology, 1993, 151, 3407-19.	0.8	83
11	APOBEC-induced mutations and their cancer effect size in head and neck squamous cell carcinoma. Oncogene, 2019, 38, 3475-3487.	5.9	81
12	Mechanistic Studies Comparing the Incorporation of (+) and (â^') Isomers of 3TCTP by HIV-1 Reverse Transcriptaseâ€. Biochemistry, 1999, 38, 55-63.	2.5	78
13	Picomolar Inhibitors of HIV Reverse Transcriptase Featuring Bicyclic Replacement of a Cyanovinylphenyl Group. Journal of the American Chemical Society, 2013, 135, 16705-16713.	13.7	78
14	HIV-1 Reverse Transcriptase Resistance to Nonnucleoside Inhibitorsâ€. Biochemistry, 1996, 35, 1054-1063.	2.5	75
15	Relationship between Antiviral Activity and Host Toxicity: Comparison of the Incorporation Efficiencies of 2′,3′-Dideoxy-5-Fluoro-3′-Thiacytidine-Triphosphate Analogs by Human Immunodeficiency Virus Type 1 Reverse Transcriptase and Human Mitochondrial DNA Polymerase. Antimicrobial Agents and Chemotherapy. 2004. 48. 1300-1306.	3.2	71
16	Mechanistic studies show that (â^')â€FTCâ€TP is a better inhibitor of HIVâ€1 reverse transcriptase than 3TCâ€TP. FASEB Journal, 1999, 13, 1511-1517.	0.5	66
17	RNA Dependent DNA Replication Fidelity of HIV-1 Reverse Transcriptase: Evidence of Discrimination between DNA and RNA Substratesâ€. Biochemistry, 1997, 36, 14056-14063.	2.5	65
18	Efficient Discovery of Potent Anti-HIV Agents Targeting the Tyr181Cys Variant of HIV Reverse Transcriptase. Journal of the American Chemical Society, 2011, 133, 15686-15696.	13.7	64

#	Article	IF	CITATIONS
19	Substrate Channeling and Domainâ^'Domain Interactions in Bifunctional Thymidylate Synthaseâ^'Dihydrofolate Reductaseâ€. Biochemistry, 1998, 37, 12195-12205.	2.5	60
20	Illuminating the Molecular Mechanisms of Tyrosine Kinase Inhibitor Resistance for the FGFR1 Gatekeeper Mutation: The Achilles' Heel of Targeted Therapy. ACS Chemical Biology, 2015, 10, 1319-1329.	3.4	57
21	Crystal Structures of HIV-1 Reverse Transcriptase with Picomolar Inhibitors Reveal Key Interactions for Drug Design. Journal of the American Chemical Society, 2012, 134, 19501-19503.	13.7	48
22	Structure-Based Evaluation of Non-nucleoside Inhibitors with Improved Potency and Solubility That Target HIV Reverse Transcriptase Variants. Journal of Medicinal Chemistry, 2015, 58, 2737-2745.	6.4	48
23	Crystallographic Studies of Phosphonate-Based α-Reaction Transition-State Analogues Complexed to Tryptophan Synthaseâ€,‡. Biochemistry, 1999, 38, 12665-12674.	2.5	47
24	Surface point mutations that significantly alter the structure and stability of a protein's denatured state. Protein Science, 1996, 5, 2009-2019.	7.6	46
25	Covalent inhibitors for eradication of drug-resistant HIV-1 reverse transcriptase: From design to protein crystallography. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9725-9730.	7.1	43
26	Structure-guided design of a perampanel-derived pharmacophore targeting the SARS-CoV-2 main protease. Structure, 2021, 29, 823-833.e5.	3.3	43
27	Intersubunit Communication in Tryptophan Synthase by Carbon-13 and Fluorine-19 REDOR NMRâ€. Biochemistry, 1996, 35, 3328-3334.	2.5	42
28	A role for calnexin (IP90) in the assembly of class II MHC molecules. EMBO Journal, 1994, 13, 675-82.	7.8	42
29	Mechanism of Inhibition of the Human Immunodeficiency Virus Type 1 Reverse Transcriptase by d4TTP: an Equivalent Incorporation Efficiency Relative to the Natural Substrate dTTP. Antimicrobial Agents and Chemotherapy, 2000, 44, 217-221.	3.2	39
30	Picomolar Inhibitors of HIV-1 Reverse Transcriptase: Design and Crystallography of Naphthyl Phenyl Ethers. ACS Medicinal Chemistry Letters, 2014, 5, 1259-1262.	2.8	39
31	Probing the structural and molecular basis of nucleotide selectivity by human mitochondrial DNA polymerase γ. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8596-8601.	7.1	37
32	Optimization of Triarylpyridinone Inhibitors of the Main Protease of SARS-CoV-2 to Low-Nanomolar Antiviral Potency. ACS Medicinal Chemistry Letters, 2021, 12, 1325-1332.	2.8	37
33	The FGFR1 V561M Gatekeeper Mutation Drives AZD4547 Resistance through STAT3 Activation and EMT. Molecular Cancer Research, 2019, 17, 532-543.	3.4	35
34	Extension into the entrance channel of HIV-1 reverse transcriptase—Crystallography and enhanced solubility. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5209-5212.	2.2	33
35	First Three-Dimensional Structure of <i>Toxoplasma gondii</i> Thymidylate Synthase–Dihydrofolate Reductase: Insights for Catalysis, Interdomain Interactions, and Substrate Channeling. Biochemistry, 2013, 52, 7305-7317.	2.5	32
36	Kinetic Characterization of Bifunctional Thymidylate Synthase-Dihydrofolate Reductase (TS-DHFR) from Cryptosporidium hominis. Journal of Biological Chemistry, 2004, 279, 18314-18322.	3.4	30

#	Article	IF	CITATIONS
37	From in silico hit to long-acting late-stage preclinical candidate to combat HIV-1 infection. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E802-E811.	7.1	30
38	Perspectives on the molecular mechanism of inhibition and toxicity of nucleoside analogs that target HIV-1 reverse transcriptase. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2002, 1587, 296-299.	3.8	29
39	Structural studies provide clues for analog design of specific inhibitors of Cryptosporidium hominis thymidylate synthase–dihydrofolate reductase. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4158-4161.	2.2	28
40	Activity and fidelity of human DNA polymerase $\hat{I}\pm$ depend on primer structure. Journal of Biological Chemistry, 2018, 293, 6824-6843.	3.4	28
41	Insights into DNA substrate selection by APOBEC3G from structural, biochemical, and functional studies. PLoS ONE, 2018, 13, e0195048.	2.5	25
42	Interactions of enantiomers of 2′,3′-didehydro-2′,3′-dideoxy-fluorocytidine with wild type and M184V mutant HIV-1 reverse transcriptase. Antiviral Research, 2002, 56, 189-205.	4.1	24
43	Insights into the Molecular Mechanism of Polymerization and Nucleoside Reverse Transcriptase Inhibitor Incorporation by Human PrimPol. Antimicrobial Agents and Chemotherapy, 2016, 60, 561-569.	3.2	24
44	Discovery of Potent and Selective Inhibitors of <i>Toxoplasma gondii</i> Thymidylate Synthase for Opportunistic Infections. ACS Medicinal Chemistry Letters, 2013, 4, 1148-1151.	2.8	23
45	Fluorescence Resonance Energy Transfer Studies of DNA Polymerase β. Journal of Biological Chemistry, 2014, 289, 16541-16550.	3.4	23
46	Implication of the tRNA Initiation Step for Human Immunodeficiency Virus Type 1 Reverse Transcriptase in the Mechanism of 3â€~-Azido-3â€~-deoxythymidine (AZT) Resistanceâ€. Biochemistry, 1998, 37, 14189-14194.	2.5	22
47	Probing the Mechanistic Consequences of 5-Fluorine Substitution on Cytidine Nucleotide Analogue Incorporation by HIV-1 Reverse Transcriptase. Antiviral Chemistry and Chemotherapy, 2003, 14, 115-125.	0.6	22
48	Potent Inhibitors Active against HIV Reverse Transcriptase with K101P, a Mutation Conferring Rilpivirine Resistance. ACS Medicinal Chemistry Letters, 2015, 6, 1075-1079.	2.8	22
49	Design, Conformation, and Crystallography of 2-Naphthyl Phenyl Ethers as Potent Anti-HIV Agents. ACS Medicinal Chemistry Letters, 2016, 7, 1156-1160.	2.8	22
50	MYB fusions and CD markers as tools for authentication and purification of cancer stem cells from salivary adenoid cystic carcinoma. Stem Cell Research, 2017, 21, 160-166.	0.7	22
51	Substituted pyrrolo[2,3-d]pyrimidines as Cryptosporidium hominis thymidylate synthase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5426-5428.	2.2	21
52	Structureâ€Based Evaluation of C5 Derivatives in the Catechol Diether Series Targeting <scp>HIV</scp> â€1 Reverse Transcriptase. Chemical Biology and Drug Design, 2014, 83, 541-549.	3.2	21
53	Structural insights into the recognition of nucleoside reverse transcriptase inhibitors by HIVâ€1 reverse transcriptase: First crystal structures with reverse transcriptase and the active triphosphate forms of lamivudine and emtricitabine. Protein Science, 2019, 28, 1664-1675.	7.6	20
54	The Catalytic Mechanism of EPSP Synthase Revisited. Biochemistry, 1999, 38, 7372-7379.	2.5	19

#	Article	IF	CITATIONS
55	Illuminating HIV gp120-ligand recognition through computationally-driven optimization of antibody-recruiting molecules. Chemical Science, 2014, 5, 2311-2317.	7.4	19
56	Discovery and crystallography of bicyclic arylaminoazines as potent inhibitors of HIV-1 reverse transcriptase. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4824-4827.	2.2	19
57	Novel non-active site inhibitor of Cryptosporidium hominis TS-DHFR identified by a virtual screen. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 418-423.	2.2	18
58	Differential Effects of Tyrosine Kinase Inhibitors on Normal and Oncogenic EGFR Signaling and Downstream Effectors. Molecular Cancer Research, 2015, 13, 765-774.	3.4	17
59	Exploring novel strategies for AIDS protozoal pathogens: α-helix mimetics targeting a key allosteric protein–protein interaction in <i>C. hominis</i> thymidylate synthase-dihydrofolate reductase (TS-DHFR). MedChemComm, 2013, 4, 1247-1256.	3.4	16
60	Probing the molecular mechanism of action of the HIV-1 reverse transcriptase inhibitor 4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) using pre-steady-state kinetics. Antiviral Research, 2014, 106, 1-4.	4.1	16
61	Identifying the role of PrimPol in TDF-induced toxicity and implications of its loss of function mutation in an HIV+ patient. Scientific Reports, 2020, 10, 9343.	3.3	16
62	Nonconserved Residues Ala287 and Ser290 of the Cryptosporidium hominis Thymidylate Synthase Domain Facilitate Its Rapid Rate of Catalysis,. Biochemistry, 2007, 46, 8379-8391.	2.5	15
63	Understanding the molecular mechanism of substrate channeling and domain communication in protozoal bifunctional TS-DHFR. Protein Engineering, Design and Selection, 2017, 30, 255-264.	2.1	15
64	Structural and pharmacological evaluation of a novel non-nucleoside reverse transcriptase inhibitor as a promising long acting nanoformulation for treating HIV. Antiviral Research, 2019, 167, 110-116.	4.1	15
65	Structure-Guided Identification of DNMT3B Inhibitors. ACS Medicinal Chemistry Letters, 2020, 11, 971-976.	2.8	15
66	Covalent Inhibition of Wild-Type HIV-1 Reverse Transcriptase Using a Fluorosulfate Warhead. ACS Medicinal Chemistry Letters, 2021, 12, 249-255.	2.8	15
67	Structural and Preclinical Studies of Computationally Designed Non-Nucleoside Reverse Transcriptase Inhibitors for Treating HIV infection. Molecular Pharmacology, 2017, 91, 383-391.	2.3	14
68	Deoxythioguanosine triphosphate impairs HIV replication: a new mechanism for an old drug. FASEB Journal, 2001, 15, 1902-1908.	0.5	13
69	An allosteric site on MKP5 reveals a strategy for small-molecule inhibition. Science Signaling, 2020, 13, eaba3043.	3.6	12
70	MECHANISTIC STUDIES TO UNDERSTAND THE INHIBITION OF WILD TYPE AND MUTANT HIV-1 REVERSE TRANSCRIPTASE BY CARBOVIR-TRIPHOSPHATE. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 1247-1250.	1.1	11
71	A nanotherapy strategy significantly enhances anticryptosporidial activity of an inhibitor of bifunctional thymidylate synthase-dihydrofolate reductase from Cryptosporidium. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2065-2067.	2.2	11
72	Platination of cysteine by an epidermal growth factor receptor kinase-targeted hybrid agent. Chemical Communications, 2018, 54, 7479-7482.	4.1	11

#	Article	IF	CITATIONS
73	Detection of novel enzyme intermediates in PEP-utilizing enzymes. Archives of Biochemistry and Biophysics, 2005, 433, 47-58.	3.0	10
74	A mechanistic and structural investigation of modified derivatives of the diaryltriazine class of NNRTIs targeting HIV-1 reverse transcriptase. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2203-2211.	2.4	10
75	Explaining an Unusually Fast Parasitic Enzyme: Folate Tail-Binding Residues Dictate Substrate Positioning and Catalysis in <i>Cryptosporidium hominis</i> Thymidylate Synthase. Biochemistry, 2008, 47, 8902-8911.	2.5	9
76	Virtual screening reveals allosteric inhibitors of the Toxoplasma gondii thymidylate synthase–dihydrofolate reductase. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1232-1235.	2.2	9
77	Design, Synthesis, and Antiviral Evaluation of Chimeric Inhibitors of HIV Reverse Transcriptase. ACS Medicinal Chemistry Letters, 2013, 4, 1183-1188.	2.8	8
78	The DNA Polymerase Gamma R953C Mutant Is Associated with Antiretroviral Therapy-Induced Mitochondrial Toxicity. Antimicrobial Agents and Chemotherapy, 2016, 60, 5608-5611.	3.2	8
79	Structural investigation of <scp>2â€naphthyl</scp> phenyl ether inhibitors bound to <scp>WT</scp> and <scp>Y181C</scp> reverse transcriptase highlights key features of the <scp>NNRTI</scp> binding site. Protein Science, 2020, 29, 1902-1910.	7.6	7
80	Global Genome Demethylation Causes Transcription-Associated DNA Double Strand Breaks in HPV-Associated Head and Neck Cancer Cells. Cancers, 2021, 13, 21.	3.7	7
81	Structural Studies and Structure Activity Relationships for Novel Computationally Designed Non-nucleoside Inhibitors and Their Interactions With HIV-1 Reverse Transcriptase. Frontiers in Molecular Biosciences, 2022, 9, 805187.	3.5	7
82	A transient kinetic approach to investigate nucleoside inhibitors of mitochondrial DNA polymerase γ. Methods, 2010, 51, 392-398.	3.8	6
83	DRONE: Direct Tracking of DNA Cytidine Deamination and Other DNA Modifying Activities. Analytical Chemistry, 2018, 90, 11735-11740.	6.5	6
84	Novel allosteric covalent inhibitors of bifunctional Cryptosporidium hominis TS-DHFR from parasitic protozoa identified by virtual screening. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1413-1418.	2.2	6
85	Structure activity relationship towards design of cryptosporidium specific thymidylate synthase inhibitors. European Journal of Medicinal Chemistry, 2019, 183, 111673.	5.5	5
86	Molecular and cellular studies evaluating a potent 2-cyanoindolizine catechol diether NNRTI targeting wildtype and Y181C mutant HIV-1 reverse transcriptase. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2182-2188.	2.2	4
87	Platelet-derived growth factor receptor beta activates Abl2 via direct binding and phosphorylation. Journal of Biological Chemistry, 2021, 297, 100883.	3.4	4
88	Understanding the structural basis of species selective, stereospecific inhibition for Cryptosporidium and human thymidylate synthase. FEBS Letters, 2019, 593, 2069-2078.	2.8	3
89	Post-Catalytic Complexes with Emtricitabine or Stavudine and HIV-1 Reverse Transcriptase Reveal New Mechanistic Insights for Nucleotide Incorporation and Drug Resistance. Molecules, 2020, 25, 4868.	3.8	3
90	Targeting the TS dimer interface in bifunctional Cryptosporidium hominis TS-DHFR from parasitic protozoa: Virtual screening identifies novel TS allosteric inhibitors. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127292.	2.2	2

#	Article	IF	CITATIONS
91	The molecular basis of inhibition and toxicity of modified cytosine analogues targetting HIV-1 reverse transcriptase. Antiviral Chemistry and Chemotherapy, 2001, 12 Suppl 1, 13-7.	0.6	2
92	Crystallization and preliminary X-ray investigation of the recombinantTrypanosoma brucei rhodesiense calmodulin. Proteins: Structure, Function and Bioinformatics, 1995, 21, 354-357.	2.6	1
93	Yale Cancer Center Precision Medicine Tumor Board: one tumour, multiple targets. Lancet Oncology, The, 2018, 19, 1567-1568.	10.7	1
94	Reply to Pandey et al.: Understanding the efficacy of a potential antiretroviral drug candidate in humanized mouse model of HIV infection. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8114-E8115.	7.1	0
95	Biochemical and Functional Characterization of the Mutagenic Cytidine Deaminase, APOBEC3B. FASEB Journal, 2015, 29, 573.48.	0.5	0
96	Human PrimPol: A Novel Mechanism of Antiviral Toxicity. FASEB Journal, 2015, 29, 710.23.	0.5	0