## Lihi Adler-Abramovich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8824332/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Molecular Coâ€Assembly of Two Building Blocks Harnesses Both their Attributes into a Functional<br>Supramolecular Hydrogel. Macromolecular Bioscience, 2022, 22, e2100439.                                              | 4.1  | 10        |
| 2  | Disordered Protein Stabilization by Co-Assembly of Short Peptides Enables Formation of Robust<br>Membranes. ACS Applied Materials & Interfaces, 2022, 14, 464-473.                                                      | 8.0  | 8         |
| 3  | Atomic insight into short helical peptide comprised of consecutive multiple aromatic residues.<br>Chemical Communications, 2022, 58, 6445-6448.                                                                         | 4.1  | 2         |
| 4  | Stabilizing gelatin-based bioinks under physiological conditions by incorporation of ethylene-glycol-conjugated Fmoc-FF peptides. Nanoscale, 2022, 14, 8525-8533.                                                       | 5.6  | 9         |
| 5  | Thixotropic Red Microalgae Sulfated Polysaccharide-Peptide Composite Hydrogels as Scaffolds for Tissue Engineering. Biomedicines, 2022, 10, 1388.                                                                       | 3.2  | 12        |
| 6  | Directed Enzyme Evolution and Encapsulation in Peptide Nanospheres of Quorum Quenching<br>Lactonase as an Antibacterial Treatment against Plant Pathogen. ACS Applied Materials &<br>Interfaces, 2021, 13, 2179-2188.   | 8.0  | 14        |
| 7  | Hyaluronic Acid and a Short Peptide Improve the Performance of a PCL Electrospun Fibrous Scaffold<br>Designed for Bone Tissue Engineering Applications. International Journal of Molecular Sciences, 2021,<br>22, 2425. | 4.1  | 19        |
| 8  | Protection of Oxygen-Sensitive Enzymes by Peptide Hydrogel. ACS Nano, 2021, 15, 6530-6539.                                                                                                                              | 14.6 | 26        |
| 9  | From Folding to Assembly: Functional Supramolecular Architectures of Peptides Comprised of Non anonical Amino Acids. Macromolecular Bioscience, 2021, 21, e2100090.                                                     | 4.1  | 19        |
| 10 | Resilient Women and the Resiliency of Science. Chemistry of Materials, 2021, 33, 6585-6588.                                                                                                                             | 6.7  | 3         |
| 11 | Mechanical Enhancement and Kinetics Regulation of Fmocâ€Diphenylalanine Hydrogels by Thioflavinâ€T.<br>Angewandte Chemie - International Edition, 2021, 60, 25339-25345.                                                | 13.8 | 16        |
| 12 | Modification of a Single Atom Affects the Physical Properties of Double Fluorinated Fmoc-Phe<br>Derivatives. International Journal of Molecular Sciences, 2021, 22, 9634.                                               | 4.1  | 9         |
| 13 | The Effects of a Short Self-Assembling Peptide on the Physical and Biological Properties of Biopolymer<br>Hydrogels. Pharmaceutics, 2021, 13, 1602.                                                                     | 4.5  | 13        |
| 14 | Dipeptide Nanostructure Assembly and Dynamics <i>via in Situ</i> Liquid-Phase Electron Microscopy.<br>ACS Nano, 2021, 15, 16542-16551.                                                                                  | 14.6 | 21        |
| 15 | Sonochemical Functionalization of Cotton and Nonâ€Woven Fabrics with Bioâ€Inspired Selfâ€Assembled<br>Nanostructures. Israel Journal of Chemistry, 2020, 60, 1190-1196.                                                 | 2.3  | 8         |
| 16 | Surface Modification by Nano-Structures Reduces Viable Bacterial Biofilm in Aerobic and Anaerobic<br>Environments. International Journal of Molecular Sciences, 2020, 21, 7370.                                         | 4.1  | 7         |
| 17 | Phase Transition and Crystallization Kinetics of a Supramolecular System in a Microfluidic Platform.<br>Chemistry of Materials, 2020, 32, 8342-8349.                                                                    | 6.7  | 22        |
| 18 | Formation of peptide-based oligomers in dimethylsulfoxide: identifying the precursor of fibril<br>formation. Soft Matter, 2020, 16, 7860-7868.                                                                          | 2.7  | 12        |

| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Collagen-Inspired Helical Peptide Coassembly Forms a Rigid Hydrogel with Twisted Polyproline II<br>Architecture. ACS Nano, 2020, 14, 9990-10000.                                                                  | 14.6 | 25        |
| 20 | The retinal toxicity profile towards assemblies of Amyloid-β indicate the predominant pathophysiological activity of oligomeric species. Scientific Reports, 2020, 10, 20954.                                     | 3.3  | 11        |
| 21 | Structural Transformation and Morphology of Dipeptide Supramolecular Assemblies by Liquid-phase<br>TEM. Microscopy and Microanalysis, 2020, 26, 1442-1443.                                                        | 0.4  | 0         |
| 22 | Bi-functional peptide-based 3D hydrogel-scaffolds. Soft Matter, 2020, 16, 7006-7017.                                                                                                                              | 2.7  | 20        |
| 23 | Induction of retinopathy by fibrillar oxalate assemblies. Communications Chemistry, 2020, 3, .                                                                                                                    | 4.5  | 14        |
| 24 | Rheological analysis of the interplay between the molecular weight and concentration of hyaluronic<br>acid in formulations of supramolecular HA/FmocFF hybrid hydrogels. Polymer Journal, 2020, 52,<br>1007-1012. | 2.7  | 13        |
| 25 | Composite of Peptideâ€Supramolecular Polymer and Covalent Polymer Comprises a New<br>Multifunctional, Bioâ€Inspired Soft Material. Macromolecular Rapid Communications, 2019, 40, e1900175.                       | 3.9  | 37        |
| 26 | Fmoc-FF and hexapeptide-based multicomponent hydrogels as scaffold materials. Soft Matter, 2019, 15, 487-496.                                                                                                     | 2.7  | 70        |
| 27 | Enhanced Nanoassembly-Incorporated Antibacterial Composite Materials. ACS Applied Materials &<br>Interfaces, 2019, 11, 21334-21342.                                                                               | 8.0  | 36        |
| 28 | Injectable Alginate-Peptide Composite Hydrogel as a Scaffold for Bone Tissue Regeneration.<br>Nanomaterials, 2019, 9, 497.                                                                                        | 4.1  | 94        |
| 29 | A Self-Healing, All-Organic, Conducting, Composite Peptide Hydrogel as Pressure Sensor and Electrogenic Cell Soft Substrate. ACS Nano, 2019, 13, 163-175.                                                         | 14.6 | 149       |
| 30 | Transition of Metastable Cross-α Crystals into Cross-β Fibrils by β-Turn Flipping. Journal of the American<br>Chemical Society, 2019, 141, 363-369.                                                               | 13.7 | 22        |
| 31 | Bio Mimicking of Extracellular Matrix. Advances in Experimental Medicine and Biology, 2019, 1174, 371-399.                                                                                                        | 1.6  | 10        |
| 32 | Amyloidâ€Like Fibrillary Morphology Originated by Tyrosine ontaining Aromatic Hexapeptides.<br>Chemistry - A European Journal, 2018, 24, 6804-6817.                                                               | 3.3  | 28        |
| 33 | Bionanostructures: Bioinspired Flexible and Tough Layered Peptide Crystals (Adv. Mater. 5/2018).<br>Advanced Materials, 2018, 30, 1870035.                                                                        | 21.0 | 0         |
| 34 | Differential inhibition of metabolite amyloid formation by generic fibrillation-modifying polyphenols.<br>Communications Chemistry, 2018, 1, .                                                                    | 4.5  | 52        |
| 35 | Structural Polymorphism in a Self-Assembled Tri-Aromatic Peptide System. ACS Nano, 2018, 12, 3253-3262.                                                                                                           | 14.6 | 72        |
| 36 | Bioinspired Flexible and Tough Layered Peptide Crystals. Advanced Materials, 2018, 30, 1704551.                                                                                                                   | 21.0 | 28        |

| #  | Article                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | UV Light–Responsive Peptideâ€Based Supramolecular Hydrogel for Controlled Drug Delivery.<br>Macromolecular Rapid Communications, 2018, 39, e1800588.                                     | 3.9  | 85        |
| 38 | Pillarareneâ€Based Twoâ€Component Thixotropic Supramolecular Organogels: Complementarity and<br>Multivalency as Prominent Motifs. Chemistry - A European Journal, 2018, 24, 15695-15695. | 3.3  | 1         |
| 39 | Improving the Mechanical Rigidity of Hyaluronic Acid by Integration of a Supramolecular Peptide<br>Matrix. ACS Applied Materials & Interfaces, 2018, 10, 41883-41891.                    | 8.0  | 65        |
| 40 | Opal-like Multicolor Appearance of Self-Assembled Photonic Array. ACS Applied Materials &<br>Interfaces, 2018, 10, 20783-20789.                                                          | 8.0  | 17        |
| 41 | Rosmarinic Acid Restores Complete Transparency of Sonicated Human Cataract Ex Vivo and Delays<br>Cataract Formation In Vivo. Scientific Reports, 2018, 8, 9341.                          | 3.3  | 25        |
| 42 | Pillarareneâ€Based Two omponent Thixotropic Supramolecular Organogels: Complementarity and<br>Multivalency as Prominent Motifs. Chemistry - A European Journal, 2018, 24, 15750-15755.   | 3.3  | 14        |
| 43 | Self-Assembly-Mediated Release of Peptide Nanoparticles through Jets Across Microdroplet Interfaces.<br>ACS Applied Materials & Interfaces, 2018, 10, 27578-27583.                       | 8.0  | 14        |
| 44 | A minimal length rigid helical peptide motif allows rational design of modular surfactants. Nature<br>Communications, 2017, 8, 14018.                                                    | 12.8 | 49        |
| 45 | Diphenylalanine as a Reductionist Model for the Mechanistic Characterization of β <i>-</i> Amyloid<br>Modulators. ACS Nano, 2017, 11, 5960-5969.                                         | 14.6 | 62        |
| 46 | Cathepsin nanofiber substrates as potential agents for targeted drug delivery. Journal of Controlled<br>Release, 2017, 257, 60-67.                                                       | 9.9  | 28        |
| 47 | Advantages of Self-assembled Supramolecular Polymers Toward Biological Applications. , 2017, , 9-35.                                                                                     |      | 2         |
| 48 | Arginine-Presenting Peptide Hydrogels Decorated with Hydroxyapatite as Biomimetic Scaffolds for<br>Bone Regeneration. Biomacromolecules, 2017, 18, 3541-3550.                            | 5.4  | 78        |
| 49 | Molecular co-assembly as a strategy for synergistic improvement of the mechanical properties of hydrogels. Chemical Communications, 2017, 53, 9586-9589.                                 | 4.1  | 78        |
| 50 | Self-assembling dipeptide antibacterial nanostructures with membrane disrupting activity. Nature<br>Communications, 2017, 8, 1365.                                                       | 12.8 | 299       |
| 51 | Formation of Apoptosisâ€Inducing Amyloid Fibrils by Tryptophan. Israel Journal of Chemistry, 2017, 57,<br>729-737.                                                                       | 2.3  | 56        |
| 52 | Molecular Engineering of Somatostatin Analogue with Minimal Dipeptide Motif Induces the Formation of Functional Nanoparticles. ChemNanoMat, 2017, 3, 27-32.                              | 2.8  | 3         |
| 53 | Controlling the Physical Dimensions of Peptide Nanotubes by Supramolecular Polymer Coassembly.<br>ACS Nano, 2016, 10, 7436-7442.                                                         | 14.6 | 91        |
| 54 | Elastic instability-mediated actuation by a supra-molecular polymer. Nature Physics, 2016, 12, 926-930.                                                                                  | 16.7 | 32        |

| #  | Article                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Spectral Transition in Bioâ€Inspired Selfâ€Assembled Peptide Nucleic Acid Photonic Crystals. Advanced<br>Materials, 2016, 28, 2195-2200.                                          | 21.0 | 47        |
| 56 | Fmoc-modified amino acids and short peptides: simple bio-inspired building blocks for the fabrication of functional materials. Chemical Society Reviews, 2016, 45, 3935-3953.     | 38.1 | 366       |
| 57 | Expanding the Nanoarchitectural Diversity Through Aromatic Di- and Tri-Peptide Coassembly:<br>Nanostructures and Molecular Mechanisms. ACS Nano, 2016, 10, 8316-8324.             | 14.6 | 84        |
| 58 | Disruption of diphenylalanine assembly by a Boc-modified variant. Soft Matter, 2016, 12, 9451-9457.                                                                               | 2.7  | 23        |
| 59 | Spontaneous structural transition and crystal formation in minimal supramolecular polymer model.<br>Science Advances, 2016, 2, e1500827.                                          | 10.3 | 62        |
| 60 | Formation of bacterial pilus-like nanofibres by designed minimalistic self-assembling peptides. Nature<br>Communications, 2016, 7, 13482.                                         | 12.8 | 27        |
| 61 | Dynamic microfluidic control of supramolecular peptide self-assembly. Nature Communications, 2016, 7, 13190.                                                                      | 12.8 | 89        |
| 62 | Molecular Engineering of Self-Assembling Diphenylalanine Analogues Results in the Formation of Distinctive Microstructures. Chemistry of Materials, 2016, 28, 4341-4348.          | 6.7  | 27        |
| 63 | Photonic Crystals: Spectral Transition in Bioâ€Inspired Selfâ€Assembled Peptide Nucleic Acid Photonic<br>Crystals (Adv. Mater. 11/2016). Advanced Materials, 2016, 28, 2276-2276. | 21.0 | 3         |
| 64 | Doxycycline hinders phenylalanine fibril assemblies revealing a potential novel therapeutic approach<br>in phenylketonuria. Scientific Reports, 2015, 5, 15902.                   | 3.3  | 33        |
| 65 | Controllable Phase Separation by Boc-Modified Lipophilic Acid as a Multifunctional Extractant.<br>Scientific Reports, 2015, 5, 17509.                                             | 3.3  | 4         |
| 66 | FtsZ Cytoskeletal Filaments as a Template for Metallic Nanowire Fabrication. Journal of Nanoscience and Nanotechnology, 2015, 15, 556-561.                                        | 0.9  | 2         |
| 67 | Solventâ€Induced Selfâ€Assembly of Highly Hydrophobic Tetra―and Pentaphenylalanine Peptides. Israel<br>Journal of Chemistry, 2015, 55, 756-762.                                   | 2.3  | 11        |
| 68 | Light-emitting self-assembled peptide nucleic acids exhibit both stacking interactions and Watson–Crick base pairing. Nature Nanotechnology, 2015, 10, 353-360.                   | 31.5 | 136       |
| 69 | Synergetic functional properties of two-component single amino acid-based hydrogels.<br>CrystEngComm, 2015, 17, 8105-8112.                                                        | 2.6  | 34        |
| 70 | Spontaneous Structural Transition in Phospholipid-Inspired Aromatic Phosphopeptide<br>Nanostructures. ACS Nano, 2015, 9, 4085-4095.                                               | 14.6 | 19        |
| 71 | Extension of the generic amyloid hypothesis to nonproteinaceous metabolite assemblies. Science Advances, 2015, 1, e1500137.                                                       | 10.3 | 119       |
| 72 | Formation of functional super-helical assemblies by constrained single heptad repeat. Nature Communications, 2015, 6, 8615.                                                       | 12.8 | 101       |

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Optical property modulation of Fmoc group by pH-dependent self-assembly. RSC Advances, 2015, 5, 73914-73918.                                                                                              | 3.6  | 25        |
| 74 | The Use of the Calcitonin Minimal Recognition Module for the Design of DOPA-Containing Fibrillar<br>Assemblies. Nanomaterials, 2014, 4, 726-740.                                                          | 4.1  | 9         |
| 75 | The self-assembling zwitterionic form of <scp>L</scp> -phenylalanine at neutral pH. Acta<br>Crystallographica Section C, Structural Chemistry, 2014, 70, 326-331.                                         | 0.5  | 55        |
| 76 | Expanding the Solvent Chemical Space for Self-Assembly of Dipeptide Nanostructures. ACS Nano, 2014,<br>8, 1243-1253.                                                                                      | 14.6 | 146       |
| 77 | The physical properties of supramolecular peptide assemblies: from building block association to technological applications. Chemical Society Reviews, 2014, 43, 6881-6893.                               | 38.1 | 580       |
| 78 | Ostwald's rule of stages governs structural transitions and morphology of dipeptide supramolecular polymers. Nature Communications, 2014, 5, 5219.                                                        | 12.8 | 197       |
| 79 | Correction: The physical properties of supramolecular peptide assemblies: from building block association to technological applications. Chemical Society Reviews, 2014, 43, 7236-7236.                   | 38.1 | 14        |
| 80 | Why Are Diphenylalanine-Based Peptide Nanostructures so Rigid? Insights from First Principles<br>Calculations. Journal of the American Chemical Society, 2014, 136, 963-969.                              | 13.7 | 136       |
| 81 | Seamless Metallic Coating and Surface Adhesion of Self-Assembled Bioinspired Nanostructures Based<br>on Di-(3,4-dihydroxy- <scp>l</scp> -phenylalanine) Peptide Motif. ACS Nano, 2014, 8, 7220-7228.      | 14.6 | 68        |
| 82 | Spacer driven morphological twist in Phe-Phe dipeptide conjugates. Tetrahedron, 2013, 69, 2004-2009.                                                                                                      | 1.9  | 11        |
| 83 | Peptide-based hydrogel nanoparticles as effective drug delivery agents. Bioorganic and Medicinal Chemistry, 2013, 21, 3517-3522.                                                                          | 3.0  | 119       |
| 84 | Effect of peptide nanotube filler on structural and ion-transport properties of solid polymer electrolytes. Solid State Ionics, 2012, 220, 39-46.                                                         | 2.7  | 10        |
| 85 | The Rheological and Structural Properties of Fmoc-Peptide-Based Hydrogels: The Effect of Aromatic<br>Molecular Architecture on Self-Assembly and Physical Characteristics. Langmuir, 2012, 28, 2015-2022. | 3.5  | 158       |
| 86 | Phenylalanine assembly into toxic fibrils suggests amyloid etiology in phenylketonuria. Nature<br>Chemical Biology, 2012, 8, 701-706.                                                                     | 8.0  | 354       |
| 87 | Diphenylalanine Peptide Nanotube: Charge Transport, Band Gap And Its Relevance To Potential<br>Biomedical Applications. Advanced Materials Letters, 2011, 2, 100-105.                                     | 0.6  | 27        |
| 88 | Exploring the self-assembly of glycopeptides using a diphenylalanine scaffold. Organic and<br>Biomolecular Chemistry, 2011, 9, 5755.                                                                      | 2.8  | 36        |
| 89 | Improvement of the Mechanical Properties of Epoxy by Peptide Nanotube Fillers. Small, 2011, 7, 1007-1011.                                                                                                 | 10.0 | 29        |
| 90 | Selfâ€Assembled Organic Nanostructures with Metallic‣ike Stiffness. Angewandte Chemie -<br>International Edition, 2010, 49, 9939-9942.                                                                    | 13.8 | 128       |

| #   | Article                                                                                                                                                        | IF               | CITATIONS   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|
| 91  | Inside Cover: Self-Assembled Organic Nanostructures with Metallic-Like Stiffness (Angew. Chem. Int.) Tj ETQq1 1                                                | 0.784314<br>13.8 | rgBT /Overl |
| 92  | Characterization of Peptideâ€Nanostructureâ€Modified Electrodes and Their Application for<br>Ultrasensitive Environmental Monitoring. Small, 2010, 6, 825-831. | 10.0             | 75          |
| 93  | Patterned Arrays of Ordered Peptide Nanostructures. Journal of Nanoscience and Nanotechnology, 2009, 9, 1701-1708.                                             | 0.9              | 13          |
| 94  | Design of metalâ€binding sites onto selfâ€assembled peptide fibrils. Biopolymers, 2009, 92, 164-172.                                                           | 2.4              | 95          |
| 95  | Self-assembled arrays of peptide nanotubes by vapour deposition. Nature Nanotechnology, 2009, 4,<br>849-854.                                                   | 31.5             | 372         |
| 96  | Blue Luminescence Based on Quantum Confinement at Peptide Nanotubes. Nano Letters, 2009, 9, 3111-3115.                                                         | 9.1              | 187         |
| 97  | Self-Assembly of Phenylalanine Oligopeptides: Insights from Experiments and Simulations. Biophysical<br>Journal, 2009, 96, 5020-5029.                          | 0.5              | 212         |
| 98  | Self-Assembled Fmoc-Peptides as a Platform for the Formation of Nanostructures and Hydrogels.<br>Biomacromolecules, 2009, 10, 2646-2651.                       | 5.4              | 297         |
| 99  | Controlled patterning of peptide nanotubes and nanospheres using inkjet printing technology.<br>Journal of Peptide Science, 2008, 14, 217-223.                 | 1.4              | 91          |
| 100 | Controlled Assembly of Peptide Nanotubes Triggered by Enzymatic Activation of Self-Immolative Dendrimers. ChemBioChem, 2007, 8, 859-862.                       | 2.6              | 43          |
| 101 | Alignment of Aromatic Peptide Tubes in Strong Magnetic Fields. Advanced Materials, 2007, 19, 4474-4479.                                                        | 21.0             | 87          |
| 102 | Direct Observation of the Release of Phenylalanine from Diphenylalanine Nanotubes. Journal of the<br>American Chemical Society, 2006, 128, 6903-6908.          | 13.7             | 112         |
| 103 | Thermal and Chemical Stability of Diphenylalanine Peptide Nanotubes:  Implications for<br>Nanotechnological Applications. Langmuir, 2006, 22, 1313-1320.       | 3.5              | 349         |
| 104 | Self-Assembled Peptide Nanotubes Are Uniquely Rigid Bioinspired Supramolecular Structures. Nano<br>Letters, 2005, 5, 1343-1346.                                | 9.1              | 392         |
| 105 | Mechanical Enhancement and Kinetics Regulation of Fmoc―Diphenylalanine Hydrogels by Thioflavin T.<br>Angewandte Chemie, 0, , .                                 | 2.0              | 3           |