Mark A Brzezinski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8823912/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A silicon isotopic perspective on the contribution of diagenesis to the sedimentary silicon budget in the Southern Ocean. Geochimica Et Cosmochimica Acta, 2022, 327, 298-313.	3.9	4
2	Diminished carbon and nitrate assimilation drive changes in diatom elemental stoichiometry independent of silicification in an iron-limited assemblage. ISME Communications, 2022, 2, .	4.2	6
3	Reviews and syntheses: The biogeochemical cycle of silicon in the modern ocean. Biogeosciences, 2021, 18, 1269-1289.	3.3	124
4	Impaired viral infection and reduced mortality of diatoms in iron-limited oceanic regions. Nature Geoscience, 2021, 14, 231-237.	12.9	17
5	Controls on the Silicon Isotope Composition of Diatoms in the Peruvian Upwelling. Frontiers in Marine Science, 2021, 8, .	2.5	5
6	New Constraints on the Physical and Biological Controls on the Silicon Isotopic Composition of the Arctic Ocean. Frontiers in Marine Science, 2021, 8, .	2.5	11
7	Diatom response to alterations in upwelling and nutrient dynamics associated with climate forcing in the California Current System. Limnology and Oceanography, 2021, 66, 1578-1593.	3.1	12
8	Factors influencing urea use by giant kelp (Macrocystis pyrifera , Phaeophyceae). Limnology and Oceanography, 2021, 66, 1190-1200.	3.1	5
9	Controls on Dissolved Silicon Isotopes Along the U.S. GEOTRACES Eastern Pacific Zonal Transect (GP16). Global Biogeochemical Cycles, 2020, 34, e2020GB006538.	4.9	5
10	A Test of the Diatomâ€Bound Paleoproxy: Tracing the Isotopic Composition of Nutrientâ€Nitrogen Into Southern Ocean Particles and Sediments. Global Biogeochemical Cycles, 2020, 34, e2019GB006508.	4.9	5
11	The interaction of physical and biological factors drives phytoplankton spatial distribution in the northern California Current. Limnology and Oceanography, 2020, 65, 1974-1989.	3.1	5
12	lsopycnal Transport and Scavenging of ²³⁰ Th and ²³¹ Pa in the Pacific Southern Ocean. Global Biogeochemical Cycles, 2020, 34, e2020GB006760.	4.9	6
13	Silicon limitation facilitates virus infection and mortality of marine diatoms. Nature Microbiology, 2019, 4, 1790-1797.	13.3	64
14	Diatom Physiology Controls Silicic Acid Leakage in Response to Iron Fertilization. Global Biogeochemical Cycles, 2019, 33, 1631-1653.	4.9	0
15	Water mass analysis of the 2013 US GEOTRACES eastern Pacific zonal transect (GP16). Marine Chemistry, 2018, 201, 6-19.	2.3	38
16	Taxonâ€specific contributions to silica production in natural diatom assemblages. Limnology and Oceanography, 2018, 63, 1056-1075.	3.1	14
17	Different iron storage strategies among bloom-forming diatoms. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12275-E12284.	7.1	61
18	Diatom populations in an upwelling environment decrease silica content to avoid growth limitation. Environmental Microbiology, 2018, 20, 4184-4193.	3.8	37

#	Article	IF	CITATIONS
19	The GEOTRACES Intermediate Data Product 2017. Chemical Geology, 2018, 493, 210-223.	3.3	257
20	Urea as a source of nitrogen to giant kelp (<i>Macrocystis pyrifera</i>). Limnology and Oceanography Letters, 2018, 3, 365-373.	3.9	30
21	Divergent gene expression among phytoplankton taxa in response to upwelling. Environmental Microbiology, 2018, 20, 3069-3082.	3.8	34
22	The chemical form of silicon in marine Synechococcus. Marine Chemistry, 2018, 206, 44-51.	2.3	14
23	GEOTRACES inter-calibration of the stable silicon isotope composition of dissolved silicic acid in seawater. Journal of Analytical Atomic Spectrometry, 2017, 32, 562-578.	3.0	37
24	Picoplankton contribution to biogenic silica stocks and production rates in the Sargasso Sea. Global Biogeochemical Cycles, 2017, 31, 762-774.	4.9	27
25	Diatom Transcriptional and Physiological Responses to Changes in Iron Bioavailability across Ocean Provinces. Frontiers in Marine Science, 2017, 4, .	2.5	55
26	Elevated pCO2 enhances bacterioplankton removal of organic carbon. PLoS ONE, 2017, 12, e0173145.	2.5	25
27	Patterns and regulation of silicon accumulation in <i>Synechococcus</i> spp Journal of Phycology, 2017, 53, 746-761.	2.3	26
28	Silicon content of individual cells of Synechococcus from the North Atlantic Ocean. Marine Chemistry, 2016, 187, 16-24.	2.3	24
29	Heavy silicon isotopic composition of silicic acid and biogenic silica in Arctic waters over the Beaufort shelf and the Canada Basin. Global Biogeochemical Cycles, 2016, 30, 804-824.	4.9	18
30	Evaluating Carbonate System Algorithms in a Nearshore System: Does Total Alkalinity Matter?. PLoS ONE, 2016, 11, e0165191.	2.5	9
31	Enhanced silica ballasting from iron stress sustains carbon export in a frontal zone within the California Current. Journal of Geophysical Research: Oceans, 2015, 120, 4654-4669.	2.6	64
32	The silicon isotope composition of <i>Ethmodiscus rex</i> laminated diatom mats from the tropical West Pacific: Implications for silicate cycling during the Last Glacial Maximum. Paleoceanography, 2015, 30, 803-823.	3.0	27
33	Controls on the silicon isotope distribution in the ocean: New diagnostics from a dataâ€constrained model. Global Biogeochemical Cycles, 2015, 29, 267-287.	4.9	17
34	Quantifying diatom silicification with the fluorescent dye, PDMPO. Limnology and Oceanography: Methods, 2015, 13, 587-599.	2.0	14
35	Variability in diatom contributions to biomass, organic matter production and export across a frontal gradient in the <scp>C</scp> alifornia <scp>C</scp> urrent <scp>E</scp> cosystem. Journal of Geophysical Research: Oceans, 2015, 120, 1032-1047.	2.6	47
36	Combined effects of CO ₂ and temperature on carbon uptake and partitioning by the marine diatoms <i><scp>T</scp>halassiosira weissflogii</i> and <i><scp>D</scp>actyliosolen fragilissimus</i> . Limnology and Oceanography, 2015, 60, 901-919.	3.1	68

#	Article	IF	CITATIONS
37	Distal and proximal controls on the silicon stable isotope signature of North Atlantic Deep Water. Earth and Planetary Science Letters, 2015, 432, 342-353.	4.4	17
38	Synchronous shifts in dissolved organic carbon bioavailability and bacterial community responses over the course of an upwelling-driven phytoplankton bloom. Limnology and Oceanography, 2015, 60, 657-677.	3.1	78
39	Coupling of the distribution of silicon isotopes to the meridional overturning circulation of the North Atlantic Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 116, 79-88.	1.4	32
40	Roles of diatom nutrient stress and species identity in determining the short- and long-term bioavailability of diatom exudates to bacterioplankton. Marine Chemistry, 2015, 177, 335-348.	2.3	28
41	Using silicon isotopes to understand the role of the Southern Ocean in modern and ancient biogeochemistry and climate. Quaternary Science Reviews, 2014, 89, 13-26.	3.0	61
42	The changing roles of iron and vertical mixing in regulating nitrogen and silicon cycling in the Southern Ocean over the last glacial cycle. Paleoceanography, 2014, 29, 1179-1195.	3.0	16
43	Species-dependent silicon isotope fractionation by marine diatoms. Geochimica Et Cosmochimica Acta, 2013, 104, 300-309.	3.9	115
44	Chlorophyll bloom development and the subtropical front in the North Pacific. Journal of Geophysical Research: Oceans, 2013, 118, 1473-1488.	2.6	16
45	Biogenic silica cycling during summer phytoplankton blooms in the North Pacific subtropical gyre. Deep-Sea Research Part I: Oceanographic Research Papers, 2013, 71, 49-60.	1.4	25
46	Biogenic silica standing stock and export in the Santa Barbara Channel ecosystem. Journal of Geophysical Research: Oceans, 2013, 118, 736-749.	2.6	10
47	Increased kinetic efficiency for silicic acid uptake as a driver of summer diatom blooms in the North Pacific subtropical gyre. Limnology and Oceanography, 2012, 57, 1084-1098.	3.1	31
48	Significant silicon accumulation by marine picocyanobacteria. Nature Geoscience, 2012, 5, 886-891.	12.9	96
49	Sources of phytoplankton to the inner continental shelf in the Santa Barbara Channel inferred from cross-shelf gradients in biological, physical and chemical parameters. Continental Shelf Research, 2012, 48, 27-39.	1.8	13
50	Summer Diatom Blooms in the North Pacific Subtropical Gyre: 2008–2009. PLoS ONE, 2012, 7, e33109.	2.5	60
51	Systematic removal of neutral sugars within dissolved organic matter across ocean basins. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	31
52	Mechanisms controlling silicon isotope distribution in the Eastern Equatorial Pacific. Geochimica Et Cosmochimica Acta, 2011, 75, 4286-4294.	3.9	34
53	Southern ocean nitrogen and silicon dynamics during the last deglaciation. Earth and Planetary Science Letters, 2011, 310, 334-339.	4.4	51
54	The annual silica cycle of the North Pacific subtropical gyre. Deep-Sea Research Part I: Oceanographic Research Papers, 2011, 58, 988-1001.	1.4	55

#	Article	IF	CITATIONS
55	Particulate silica and Si recycling in the surface waters of the Eastern Equatorial Pacific. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58, 449-461.	1.4	16
56	Co-limitation of diatoms by iron and silicic acid in the equatorial Pacific. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58, 493-511.	1.4	81
57	Net biogenic silica production and nitrate regeneration determine the strength of the silica pump in the Eastern Equatorial Pacific. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58, 462-476.	1.4	16
58	Biogenic silica production and the diatom contribution to primary production and nitrate uptake in the eastern equatorial Pacific Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58, 434-448.	1.4	56
59	Phytoplankton primary productivity in the Santa Barbara Channel: Effects of wind-driven upwelling and mesoscale eddies. Journal of Geophysical Research, 2011, 116, .	3.3	53
60	Partitioning of primary production among giant kelp (<i>Macrocystis pyrifera</i>), understory macroalgae, and phytoplankton on a temperate reef. Limnology and Oceanography, 2011, 56, 119-132.	3.1	89
61	Application of low-level beta counting of 32Si for the measurement of silica production rates in aquatic environments. Marine Chemistry, 2011, 127, 40-47.	2.3	23
62	The effects of biogenic silica detritus, zooplankton grazing, and diatom size structure on silicon cycling in the euphotic zone of the eastern equatorial Pacific. Limnology and Oceanography, 2010, 55, 2608-2622.	3.1	34
63	Causes and biogeochemical implications of regional differences in silicification of marine diatoms. Global Biogeochemical Cycles, 2010, 24, .	4.9	50
64	Weathering, dust, and biocycling effects on soil silicon isotope ratios. Geochimica Et Cosmochimica Acta, 2010, 74, 876-889.	3.9	63
65	Rapid downward transport of the neurotoxin domoic acid in coastal waters. Nature Geoscience, 2009, 2, 272-275.	12.9	61
66	Fractionation of silicon isotopes during biogenic silica dissolution. Geochimica Et Cosmochimica Acta, 2009, 73, 5572-5583.	3.9	141
67	Empirical models of toxigenic Pseudo-nitzschia blooms: Potential use as a remote detection tool in the Santa Barbara Channel. Harmful Algae, 2009, 8, 478-492.	4.8	67
68	Controls on temporal patterns in phytoplankton community structure in the Santa Barbara Channel, California. Journal of Geophysical Research, 2008, 113, .	3.3	50
69	NET PRIMARY PRODUCTION, GROWTH, AND STANDING CROP OFMACROCYSTIS PYRIFERAIN SOUTHERN CALIFORNIA. Ecology, 2008, 89, 2068-2068.	3.2	22
70	Sources and biological fractionation of Silicon isotopes in the Eastern Equatorial Pacific. Geochimica Et Cosmochimica Acta, 2008, 72, 3063-3073.	3.9	76
71	Physical pathways and utilization of nitrate supply to the giant kelp, Macrocystis pyrifera. Limnology and Oceanography, 2008, 53, 1589-1603.	3.1	78
72	Mining the diatom genome for the mechanism of biosilicification. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1391-1392.	7.1	20

#	Article	IF	CITATIONS
73	Iron and silicic acid concentrations together regulate Si uptake in the equatorial Pacific Ocean. Limnology and Oceanography, 2008, 53, 875-889.	3.1	44
74	Mechanisms for nutrient delivery to the inner shelf: Observations from the Santa Barbara Channel. Limnology and Oceanography, 2007, 52, 1748-1766.	3.1	96
75	Spatial patterns of flow and their modification within and around a giant kelp forest. Limnology and Oceanography, 2007, 52, 1838-1852.	3.1	148
76	Silicic acid dynamics in the glacial subâ€Antarctic: Implications for the silicic acid leakage hypothesis. Global Biogeochemical Cycles, 2007, 21, .	4.9	75
77	Silicic acid leakage from the Southern Ocean: Opposing effects of nutrient uptake and oceanic circulation. Geophysical Research Letters, 2007, 34, .	4.0	24
78	An inter-laboratory comparison of Si isotope reference materials. Journal of Analytical Atomic Spectrometry, 2007, 22, 561-568.	3.0	224
79	Automated Determination of Silicon Isotope Natural Abundance by the Acid Decomposition of Cesium Hexafluosilicate. Analytical Chemistry, 2006, 78, 6109-6114.	6.5	38
80	Sensitivity considerations in polarization transfer and filtering using dipole–dipole couplings: Implications for biomineral systems. Solid State Nuclear Magnetic Resonance, 2006, 29, 170-182.	2.3	43
81	Control of silica production by iron and silicic acid during the Southern Ocean Iron Experiment (SOFeX). Limnology and Oceanography, 2005, 50, 810-824.	3.1	50
82	Comparison of size-dependent carbon, nitrate, and silicic acid uptake rates in high- and low-iron waters. Limnology and Oceanography, 2005, 50, 825-838.	3.1	27
83	Nutrient contributions to the Santa Barbara Channel, California, from the ephemeral Santa Clara River. Estuarine, Coastal and Shelf Science, 2005, 62, 559-574.	2.1	40
84	δ30Si systematics in a granitic saprolite, Puerto Rico. Geology, 2005, 33, 817.	4.4	108
85	Particle export during the Southern Ocean Iron Experiment (SOFeX). Limnology and Oceanography, 2005, 50, 311-327.	3.1	86
86	Natural variations of δ30Si ratios during progressive basalt weathering, Hawaiian Islands. Geochimica Et Cosmochimica Acta, 2005, 69, 4597-4610.	3.9	264
87	Synthesis of iron fertilization experiments: From the Iron Age in the Age of Enlightenment. Journal of Geophysical Research, 2005, 110, .	3.3	596
88	Sub-mesoscale coastal eddies observed by high frequency radar: A new mechanism for delivering nutrients to kelp forests in the Southern California Bight. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	65
89	Dynamics of silicon metabolism and silicon isotopic discrimination in a marine diatomas a function of pCO ₂ . Limnology and Oceanography, 2004, 49, 322-329.	3.1	144
90	Southern Ocean Iron Enrichment Experiment: Carbon Cycling in High- and Low-Si Waters. Science, 2004, 304, 408-414.	12.6	546

#	Article	IF	CITATIONS
91	High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature, 2004, 427, 56-60.	27.8	1,090
92	The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism. Science, 2004, 306, 79-86.	12.6	1,862
93	Biological fractionation of silicon isotopes in Southern Ocean surface waters. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	151
94	Siliceous plankton dominate primary and new productivity during the onset of El Niño conditions in the Santa Barbara Basin, California. Journal of Marine Systems, 2003, 42, 127-143.	2.1	16
95	Theoretical constraints on the uptake of silicic acid species by marine diatoms. Marine Chemistry, 2003, 82, 13-29.	2.3	14
96	Atomic force microscopy study of living diatoms in ambient conditions. Journal of Microscopy, 2003, 212, 292-299.	1.8	82
97	Simulation of upper-ocean biogeochemistry with a flexible-composition phytoplankton model: C, N and Si cycling in the western Sargasso Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2003, 50, 1445-1480.	1.4	45
98	Ratios of Si, C and N uptake by microplankton in the Southern Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2003, 50, 619-633.	1.4	111
99	The balance between silica production and silica dissolution in the sea: Insights from Monterey Bay, California, applied to the global data set. Limnology and Oceanography, 2003, 48, 1846-1854.	3.1	92
100	Diminished efficiency in the oceanic silica pump caused by bacteriaâ€mediated silica dissolution. Limnology and Oceanography, 2003, 48, 1855-1868.	3.1	78
101	Silicic acid leakage from the Southern Ocean: A possible explanation for glacial atmosphericpCO2. Global Biogeochemical Cycles, 2002, 16, 5-1-5-23.	4.9	239
102	A switch from Si(OH)4to NO3â^'depletion in the glacial Southern Ocean. Geophysical Research Letters, 2002, 29, 5-1.	4.0	294
103	Vertical budgets for organic carbon and biogenic silica in the Pacific sector of the Southern Ocean, 1996–1998. Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49, 1645-1674.	1.4	140
104	The Si cycle in the Pacific sector of the Southern Ocean: seasonal diatom production in the surface layer and export to the deep sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49, 1747-1763.	1.4	36
105	A seasonal progression of Si limitation in the Pacific sector of the Southern Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 48, 3973-3995.	1.4	124
106	Silicon dynamics within an intense open-ocean diatom bloom in the Pacific sector of the Southern Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 48, 3997-4018.	1.4	138
107	A novel fluorescent silica tracer for biological silicification studies. Chemistry and Biology, 2001, 8, 1051-1060.	6.0	148
108	SILICON METABOLISM IN DIATOMS: IMPLICATIONS FOR GROWTH. Journal of Phycology, 2000, 36, 821-840.	2.3	782

#	Article	IF	CITATIONS
109	Genetic structure of populations of the red sea urchin, Strongylocentrotus franciscanus. Journal of Experimental Marine Biology and Ecology, 2000, 253, 49-62.	1.5	33
110	Evaluation of Sequence Variation and Selection in the Bindin Locus of the Red Sea Urchin, Strongylocentrotus franciscanus. Journal of Molecular Evolution, 2000, 51, 481-490.	1.8	22
111	Iron and silicic acid concentrations regulate Si uptake north and south of the Polar Frontal Zone in the Pacific Sector of the Southern Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2000, 47, 3315-3338.	1.4	253
112	A first look at the distribution of the stable isotopes of silicon in natural waters. Geochimica Et Cosmochimica Acta, 2000, 64, 2467-2477.	3.9	285
113	SILICON-32: DIATOMS, THE SILICON CYCLE, AND THE CLIMATE. , 2000, , .		0
114	BIOLOGICAL AND CHEMICAL CHARACTERISTICS OF THE GIANT DIATOM ETHMODISCUS (BACILLARIOPHYCEAE) IN THE CENTRAL NORTH PACIFIC GYRE. Journal of Phycology, 1999, 35, 896-902.	2.3	53
115	A STUDY OF SI DEPOSITION SYNCHRONY IN RHIZOSOLENIA (BACILLARIOPHYCEAE) MATS USING A NOVEL 32SI AUTORADIOGRAPHIC METHOD. Journal of Phycology, 1999, 35, 995-1004.	2.3	17
116	THE CHEMICAL FORM OF DISSOLVED SI TAKEN UP BY MARINE DIATOMS. Journal of Phycology, 1999, 35, 1162-1170.	2.3	114
117	Upward transport of oceanic nitrate by migrating diatom mats. Nature, 1999, 397, 423-425.	27.8	144
118	Rhizosolenia mats: An overlooked source of silica production in the open sea. Limnology and Oceanography, 1999, 44, 1282-1292.	3.1	27
119	Inducing phytoplankton iron limitation in ironâ€replete coastal waters with a strong chelating ligand. Limnology and Oceanography, 1999, 44, 1009-1018.	3.1	109
120	Silicon-isotope composition of diatoms as an indicator of past oceanic change. Nature, 1998, 395, 680-683.	27.8	286
121	Silica cycling within marine snow. Limnology and Oceanography, 1997, 42, 1706-1713.	3.1	43
122	Evaluation of 32 Si as a tracer for measuring silica production rates in marine waters. Limnology and Oceanography, 1997, 42, 856-865.	3.1	69
123	Diatom growth and productivity in an oligo-trophic midocean gyre: A 3-yr record from the Sargasso Sea near Bermuda. Limnology and Oceanography, 1997, 42, 473-486.	3.1	120
124	Silica production in the Monterey, California, upwelling system. Limnology and Oceanography, 1997, 42, 1694-1705.	3.1	73
125	Fractionation of silicon isotopes by marine diatoms during biogenic silica formation. Geochimica Et Cosmochimica Acta, 1997, 61, 5051-5056.	3.9	311
126	Purification, Recovery, and Laser-Driven Fluorination of Silicon from Dissolved and Particulate Silica for the Measurement of Natural Stable Isotope Abundances. Analytical Chemistry, 1996, 68, 3746-3750.	6.5	107

#	Article	IF	CITATIONS
127	Analysis of viability and cell types of macroalgal protoplasts using flow cytometry. Journal of Applied Phycology, 1995, 7, 413-420.	2.8	2
128	Application of sephadex to radiochemical separations. Journal of Radioanalytical and Nuclear Chemistry, 1995, 195, 251-261.	1.5	7
129	Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochemical Cycles, 1995, 9, 359-372.	4.9	1,339
130	The annual silica cycle in the Sargasso Sea near Bermuda. Deep-Sea Research Part I: Oceanographic Research Papers, 1995, 42, 1215-1237.	1.4	191
131	SILICON DEPOSITION DURING THE CELL CYCLE OF THALASSIOSIRA WEISSFLOGII (BACILLARIOPHYCEAE) DETERMINED USING DUAL RHODAMINE 123 AND PROPIDIUM IODIDE STAINING1. Journal of Phycology, 1994, 30, 45-55.	2.3	70
132	NEUTRAL LIPIDS AS MAJOR STORAGE PRODUCTS IN ZOOSPORES OE THE GIANT KELP MACROCYSTIS PYRIFERA (PHAEOPHYGEAE)1. Journal of Phycology, 1993, 29, 16-23.	2.3	44
133	Cell-cycle effects on the kinetics of silicic acid uptake and resource competition among diatoms. Journal of Plankton Research, 1992, 14, 1511-1539.	1.8	81
134	Seasonal changes in the silicon cycle within a Gulf Stream warm-core ring. Deep-sea Research Part A, Oceanographic Research Papers, 1989, 36, 1009-1030.	1.5	155
135	INTERACTIONS BETWEEN PULSED NUTRIENT SUPPLIES AND A PHOTOCYCLE AFFECT PHYTOPLANKTON COMPETITION FOR LIMITING NUTRIENTS IN LONG-TERM CULTURE. Journal of Phycology, 1988, 24, 346-356.	2.3	19
136	Differential cell sinking as a factor influencing diatom species competition for limiting nutrients. Journal of Experimental Marine Biology and Ecology, 1988, 119, 179-200.	1.5	9
137	Vertical distribution of ammonium in stratified oligotrophic waters. Limnology and Oceanography, 1988, 33, 1176-1182.	3.1	69
138	INTERACTIONS BETWEEN PULSED NUTRIENT SUPPLIES AND A PHOTOCYCLE AFFECT PHYTOPLANKTON COMPETITION FOR LIMITING NUTRIENTS IN LONG-TERM CULTURE1. Journal of Phycology, 1988, 24, 346-356.	2.3	15
139	Colorimetric determination of nanomolar concentrations of ammonium in seawater using solvent extraction. Marine Chemistry, 1987, 20, 277-288.	2.3	60
140	Recovery of ammonium nitrogen by solvent extraction for the determination of relative 15N abundance in regeneration experiments. Marine Chemistry, 1986, 18, 59-69.	2.3	55
141	A solvent extraction method for the colorimetric determination of nanomolar concentrations of silicic acid in seawater. Marine Chemistry, 1986, 19, 139-151.	2.3	83
142	Distribution and composition of biogenic particulate matter in a Gulf Stream warm-core ring. Deep-sea Research Part A, Oceanographic Research Papers, 1985, 32, 1347-1369.	1.5	48
143	THE Si:C:N RATIO OF MARINE DIATOMS: INTERSPECIFIC VARIABILITY AND THE EFFECT OF SOME ENVIRONMENTAL VARIABLES ¹ . Journal of Phycology, 1985, 21, 347-357.	2.3	1,084
144	A Report on the Macroinvertebrates of the Columbia River Estuary Found in Deposits of Volcanic Ash from the May 18, 1980 Eruption of Mount St. Helens. Estuaries and Coasts, 1983, 6, 172.	1.7	2