
Mark A Brzezinski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8823912/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism. Science, 2004, 306, 79-86.	12.6	1,862
2	Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochemical Cycles, 1995, 9, 359-372.	4.9	1,339
3	High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature, 2004, 427, 56-60.	27.8	1,090
4	THE SI:C:N RATIO OF MARINE DIATOMS: INTERSPECIFIC VARIABILITY AND THE EFFECT OF SOME ENVIRONMENTAL VARIABLES ¹ . Journal of Phycology, 1985, 21, 347-357.	2.3	1,084
5	SILICON METABOLISM IN DIATOMS: IMPLICATIONS FOR GROWTH. Journal of Phycology, 2000, 36, 821-840.	2.3	782
6	Synthesis of iron fertilization experiments: From the Iron Age in the Age of Enlightenment. Journal of Geophysical Research, 2005, 110, .	3.3	596
7	Southern Ocean Iron Enrichment Experiment: Carbon Cycling in High- and Low-Si Waters. Science, 2004, 304, 408-414.	12.6	546
8	Fractionation of silicon isotopes by marine diatoms during biogenic silica formation. Geochimica Et Cosmochimica Acta, 1997, 61, 5051-5056.	3.9	311
9	A switch from Si(OH)4to NO3â~'depletion in the glacial Southern Ocean. Geophysical Research Letters, 2002, 29, 5-1.	4.0	294
10	Silicon-isotope composition of diatoms as an indicator of past oceanic change. Nature, 1998, 395, 680-683.	27.8	286
11	A first look at the distribution of the stable isotopes of silicon in natural waters. Geochimica Et Cosmochimica Acta, 2000, 64, 2467-2477.	3.9	285
12	Natural variations of δ30Si ratios during progressive basalt weathering, Hawaiian Islands. Geochimica Et Cosmochimica Acta, 2005, 69, 4597-4610.	3.9	264
13	The GEOTRACES Intermediate Data Product 2017. Chemical Geology, 2018, 493, 210-223.	3.3	257
14	Iron and silicic acid concentrations regulate Si uptake north and south of the Polar Frontal Zone in the Pacific Sector of the Southern Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2000, 47, 3315-3338.	1.4	253
15	Silicic acid leakage from the Southern Ocean: A possible explanation for glacial atmosphericpCO2. Global Biogeochemical Cycles, 2002, 16, 5-1-5-23.	4.9	239
16	An inter-laboratory comparison of Si isotope reference materials. Journal of Analytical Atomic Spectrometry, 2007, 22, 561-568.	3.0	224
17	The annual silica cycle in the Sargasso Sea near Bermuda. Deep-Sea Research Part I: Oceanographic Research Papers, 1995, 42, 1215-1237.	1.4	191
18	Seasonal changes in the silicon cycle within a Gulf Stream warm-core ring. Deep-sea Research Part A, Oceanographic Research Papers, 1989, 36, 1009-1030.	1.5	155

#	Article	IF	CITATIONS
19	Biological fractionation of silicon isotopes in Southern Ocean surface waters. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	151
20	A novel fluorescent silica tracer for biological silicification studies. Chemistry and Biology, 2001, 8, 1051-1060.	6.0	148
21	Spatial patterns of flow and their modification within and around a giant kelp forest. Limnology and Oceanography, 2007, 52, 1838-1852.	3.1	148
22	Upward transport of oceanic nitrate by migrating diatom mats. Nature, 1999, 397, 423-425.	27.8	144
23	Dynamics of silicon metabolism and silicon isotopic discrimination in a marine diatomas a function of pCO ₂ . Limnology and Oceanography, 2004, 49, 322-329.	3.1	144
24	Fractionation of silicon isotopes during biogenic silica dissolution. Geochimica Et Cosmochimica Acta, 2009, 73, 5572-5583.	3.9	141
25	Vertical budgets for organic carbon and biogenic silica in the Pacific sector of the Southern Ocean, 1996–1998. Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49, 1645-1674.	1.4	140
26	Silicon dynamics within an intense open-ocean diatom bloom in the Pacific sector of the Southern Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 48, 3997-4018.	1.4	138
27	A seasonal progression of Si limitation in the Pacific sector of the Southern Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 48, 3973-3995.	1.4	124
28	Reviews and syntheses: The biogeochemical cycle of silicon in the modern ocean. Biogeosciences, 2021, 18, 1269-1289.	3.3	124
29	Diatom growth and productivity in an oligo-trophic midocean gyre: A 3-yr record from the Sargasso Sea near Bermuda. Limnology and Oceanography, 1997, 42, 473-486.	3.1	120
30	Species-dependent silicon isotope fractionation by marine diatoms. Geochimica Et Cosmochimica Acta, 2013, 104, 300-309.	3.9	115
31	THE CHEMICAL FORM OF DISSOLVED SI TAKEN UP BY MARINE DIATOMS. Journal of Phycology, 1999, 35, 1162-1170.	2.3	114
32	Ratios of Si, C and N uptake by microplankton in the Southern Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2003, 50, 619-633.	1.4	111
33	Inducing phytoplankton iron limitation in ironâ€replete coastal waters with a strong chelating ligand. Limnology and Oceanography, 1999, 44, 1009-1018.	3.1	109
34	δ30Si systematics in a granitic saprolite, Puerto Rico. Geology, 2005, 33, 817.	4.4	108
35	Purification, Recovery, and Laser-Driven Fluorination of Silicon from Dissolved and Particulate Silica for the Measurement of Natural Stable Isotope Abundances. Analytical Chemistry, 1996, 68, 3746-3750.	6.5	107
36	Mechanisms for nutrient delivery to the inner shelf: Observations from the Santa Barbara Channel. Limnology and Oceanography, 2007, 52, 1748-1766.	3.1	96

#	Article	IF	CITATIONS
37	Significant silicon accumulation by marine picocyanobacteria. Nature Geoscience, 2012, 5, 886-891.	12.9	96
38	The balance between silica production and silica dissolution in the sea: Insights from Monterey Bay, California, applied to the global data set. Limnology and Oceanography, 2003, 48, 1846-1854.	3.1	92
39	Partitioning of primary production among giant kelp (<i>Macrocystis pyrifera</i>), understory macroalgae, and phytoplankton on a temperate reef. Limnology and Oceanography, 2011, 56, 119-132.	3.1	89
40	Particle export during the Southern Ocean Iron Experiment (SOFeX). Limnology and Oceanography, 2005, 50, 311-327.	3.1	86
41	A solvent extraction method for the colorimetric determination of nanomolar concentrations of silicic acid in seawater. Marine Chemistry, 1986, 19, 139-151.	2.3	83
42	Atomic force microscopy study of living diatoms in ambient conditions. Journal of Microscopy, 2003, 212, 292-299.	1.8	82
43	Cell-cycle effects on the kinetics of silicic acid uptake and resource competition among diatoms. Journal of Plankton Research, 1992, 14, 1511-1539.	1.8	81
44	Co-limitation of diatoms by iron and silicic acid in the equatorial Pacific. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58, 493-511.	1.4	81
45	Diminished efficiency in the oceanic silica pump caused by bacteriaâ€mediated silica dissolution. Limnology and Oceanography, 2003, 48, 1855-1868.	3.1	78
46	Physical pathways and utilization of nitrate supply to the giant kelp, Macrocystis pyrifera. Limnology and Oceanography, 2008, 53, 1589-1603.	3.1	78
47	Synchronous shifts in dissolved organic carbon bioavailability and bacterial community responses over the course of an upwelling-driven phytoplankton bloom. Limnology and Oceanography, 2015, 60, 657-677.	3.1	78
48	Sources and biological fractionation of Silicon isotopes in the Eastern Equatorial Pacific. Geochimica Et Cosmochimica Acta, 2008, 72, 3063-3073.	3.9	76
49	Silicic acid dynamics in the glacial subâ€Antarctic: Implications for the silicic acid leakage hypothesis. Global Biogeochemical Cycles, 2007, 21, .	4.9	75
50	Silica production in the Monterey, California, upwelling system. Limnology and Oceanography, 1997, 42, 1694-1705.	3.1	73
51	SILICON DEPOSITION DURING THE CELL CYCLE OF THALASSIOSIRA WEISSFLOGII (BACILLARIOPHYCEAE) DETERMINED USING DUAL RHODAMINE 123 AND PROPIDIUM IODIDE STAINING1. Journal of Phycology, 1994, 30, 45-55.	2.3	70
52	Vertical distribution of ammonium in stratified oligotrophic waters. Limnology and Oceanography, 1988, 33, 1176-1182.	3.1	69
53	Evaluation of 32 Si as a tracer for measuring silica production rates in marine waters. Limnology and Oceanography, 1997, 42, 856-865.	3.1	69
54	Combined effects of CO ₂ and temperature on carbon uptake and partitioning by the marine diatoms <i><scp>T</scp>halassiosira weissflogii</i> and <i><scp>D</scp>actyliosolen fragilissimus</i> . Limnology and Oceanography, 2015, 60, 901-919.	3.1	68

#	Article	IF	CITATIONS
55	Empirical models of toxigenic Pseudo-nitzschia blooms: Potential use as a remote detection tool in the Santa Barbara Channel. Harmful Algae, 2009, 8, 478-492.	4.8	67
56	Sub-mesoscale coastal eddies observed by high frequency radar: A new mechanism for delivering nutrients to kelp forests in the Southern California Bight. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	65
57	Enhanced silica ballasting from iron stress sustains carbon export in a frontal zone within the California Current. Journal of Geophysical Research: Oceans, 2015, 120, 4654-4669.	2.6	64
58	Silicon limitation facilitates virus infection and mortality of marine diatoms. Nature Microbiology, 2019, 4, 1790-1797.	13.3	64
59	Weathering, dust, and biocycling effects on soil silicon isotope ratios. Geochimica Et Cosmochimica Acta, 2010, 74, 876-889.	3.9	63
60	Rapid downward transport of the neurotoxin domoic acid in coastal waters. Nature Geoscience, 2009, 2, 272-275.	12.9	61
61	Using silicon isotopes to understand the role of the Southern Ocean in modern and ancient biogeochemistry and climate. Quaternary Science Reviews, 2014, 89, 13-26.	3.0	61
62	Different iron storage strategies among bloom-forming diatoms. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12275-E12284.	7.1	61
63	Colorimetric determination of nanomolar concentrations of ammonium in seawater using solvent extraction. Marine Chemistry, 1987, 20, 277-288.	2.3	60
64	Summer Diatom Blooms in the North Pacific Subtropical Gyre: 2008–2009. PLoS ONE, 2012, 7, e33109.	2.5	60
65	Biogenic silica production and the diatom contribution to primary production and nitrate uptake in the eastern equatorial Pacific Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58, 434-448.	1.4	56
66	Recovery of ammonium nitrogen by solvent extraction for the determination of relative 15N abundance in regeneration experiments. Marine Chemistry, 1986, 18, 59-69.	2.3	55
67	The annual silica cycle of the North Pacific subtropical gyre. Deep-Sea Research Part I: Oceanographic Research Papers, 2011, 58, 988-1001.	1.4	55
68	Diatom Transcriptional and Physiological Responses to Changes in Iron Bioavailability across Ocean Provinces. Frontiers in Marine Science, 2017, 4, .	2.5	55
69	BIOLOGICAL AND CHEMICAL CHARACTERISTICS OF THE GIANT DIATOM ETHMODISCUS (BACILLARIOPHYCEAE) IN THE CENTRAL NORTH PACIFIC GYRE. Journal of Phycology, 1999, 35, 896-902.	2.3	53
70	Phytoplankton primary productivity in the Santa Barbara Channel: Effects of wind-driven upwelling and mesoscale eddies. Journal of Geophysical Research, 2011, 116, .	3.3	53
71	Southern ocean nitrogen and silicon dynamics during the last deglaciation. Earth and Planetary Science Letters, 2011, 310, 334-339.	4.4	51
72	Control of silica production by iron and silicic acid during the Southern Ocean Iron Experiment (SOFeX). Limnology and Oceanography, 2005, 50, 810-824.	3.1	50

#	Article	IF	CITATIONS
73	Controls on temporal patterns in phytoplankton community structure in the Santa Barbara Channel, California. Journal of Geophysical Research, 2008, 113, .	3.3	50
74	Causes and biogeochemical implications of regional differences in silicification of marine diatoms. Global Biogeochemical Cycles, 2010, 24, .	4.9	50
75	Distribution and composition of biogenic particulate matter in a Gulf Stream warm-core ring. Deep-sea Research Part A, Oceanographic Research Papers, 1985, 32, 1347-1369.	1.5	48
76	Variability in diatom contributions to biomass, organic matter production and export across a frontal gradient in the <scp>C</scp> alifornia <scp>C</scp> urrent <scp>E</scp> cosystem. Journal of Geophysical Research: Oceans, 2015, 120, 1032-1047.	2.6	47
77	Simulation of upper-ocean biogeochemistry with a flexible-composition phytoplankton model: C, N and Si cycling in the western Sargasso Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2003, 50, 1445-1480.	1.4	45
78	NEUTRAL LIPIDS AS MAJOR STORAGE PRODUCTS IN ZOOSPORES OE THE GIANT KELP MACROCYSTIS PYRIFERA (PHAEOPHYGEAE)1. Journal of Phycology, 1993, 29, 16-23.	2.3	44
79	Iron and silicic acid concentrations together regulate Si uptake in the equatorial Pacific Ocean. Limnology and Oceanography, 2008, 53, 875-889.	3.1	44
80	Silica cycling within marine snow. Limnology and Oceanography, 1997, 42, 1706-1713.	3.1	43
81	Sensitivity considerations in polarization transfer and filtering using dipole–dipole couplings: Implications for biomineral systems. Solid State Nuclear Magnetic Resonance, 2006, 29, 170-182.	2.3	43
82	Nutrient contributions to the Santa Barbara Channel, California, from the ephemeral Santa Clara River. Estuarine, Coastal and Shelf Science, 2005, 62, 559-574.	2.1	40
83	Automated Determination of Silicon Isotope Natural Abundance by the Acid Decomposition of Cesium Hexafluosilicate. Analytical Chemistry, 2006, 78, 6109-6114.	6.5	38
84	Water mass analysis of the 2013 US GEOTRACES eastern Pacific zonal transect (GP16). Marine Chemistry, 2018, 201, 6-19.	2.3	38
85	GEOTRACES inter-calibration of the stable silicon isotope composition of dissolved silicic acid in seawater. Journal of Analytical Atomic Spectrometry, 2017, 32, 562-578.	3.0	37
86	Diatom populations in an upwelling environment decrease silica content to avoid growth limitation. Environmental Microbiology, 2018, 20, 4184-4193.	3.8	37
87	The Si cycle in the Pacific sector of the Southern Ocean: seasonal diatom production in the surface layer and export to the deep sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49, 1747-1763.	1.4	36
88	The effects of biogenic silica detritus, zooplankton grazing, and diatom size structure on silicon cycling in the euphotic zone of the eastern equatorial Pacific. Limnology and Oceanography, 2010, 55, 2608-2622.	3.1	34
89	Mechanisms controlling silicon isotope distribution in the Eastern Equatorial Pacific. Geochimica Et Cosmochimica Acta, 2011, 75, 4286-4294.	3.9	34
90	Divergent gene expression among phytoplankton taxa in response to upwelling. Environmental Microbiology, 2018, 20, 3069-3082.	3.8	34

#	Article	IF	CITATIONS
91	Genetic structure of populations of the red sea urchin, Strongylocentrotus franciscanus. Journal of Experimental Marine Biology and Ecology, 2000, 253, 49-62.	1.5	33
92	Coupling of the distribution of silicon isotopes to the meridional overturning circulation of the North Atlantic Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 116, 79-88.	1.4	32
93	Systematic removal of neutral sugars within dissolved organic matter across ocean basins. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	31
94	Increased kinetic efficiency for silicic acid uptake as a driver of summer diatom blooms in the North Pacific subtropical gyre. Limnology and Oceanography, 2012, 57, 1084-1098.	3.1	31
95	Urea as a source of nitrogen to giant kelp (<i>Macrocystis pyrifera</i>). Limnology and Oceanography Letters, 2018, 3, 365-373.	3.9	30
96	Roles of diatom nutrient stress and species identity in determining the short- and long-term bioavailability of diatom exudates to bacterioplankton. Marine Chemistry, 2015, 177, 335-348.	2.3	28
97	Rhizosolenia mats: An overlooked source of silica production in the open sea. Limnology and Oceanography, 1999, 44, 1282-1292.	3.1	27
98	Comparison of size-dependent carbon, nitrate, and silicic acid uptake rates in high- and low-iron waters. Limnology and Oceanography, 2005, 50, 825-838.	3.1	27
99	The silicon isotope composition of <i>Ethmodiscus rex</i> laminated diatom mats from the tropical West Pacific: Implications for silicate cycling during the Last Glacial Maximum. Paleoceanography, 2015, 30, 803-823.	3.0	27
100	Picoplankton contribution to biogenic silica stocks and production rates in the Sargasso Sea. Global Biogeochemical Cycles, 2017, 31, 762-774.	4.9	27
101	Patterns and regulation of silicon accumulation in <i>Synechococcus</i> spp Journal of Phycology, 2017, 53, 746-761.	2.3	26
102	Biogenic silica cycling during summer phytoplankton blooms in the North Pacific subtropical gyre. Deep-Sea Research Part I: Oceanographic Research Papers, 2013, 71, 49-60.	1.4	25
103	Elevated pCO2 enhances bacterioplankton removal of organic carbon. PLoS ONE, 2017, 12, e0173145.	2.5	25
104	Silicic acid leakage from the Southern Ocean: Opposing effects of nutrient uptake and oceanic circulation. Geophysical Research Letters, 2007, 34, .	4.0	24
105	Silicon content of individual cells of Synechococcus from the North Atlantic Ocean. Marine Chemistry, 2016, 187, 16-24.	2.3	24
106	Application of low-level beta counting of 32Si for the measurement of silica production rates in aquatic environments. Marine Chemistry, 2011, 127, 40-47.	2.3	23
107	Evaluation of Sequence Variation and Selection in the Bindin Locus of the Red Sea Urchin, Strongylocentrotus franciscanus. Journal of Molecular Evolution, 2000, 51, 481-490.	1.8	22
108	NET PRIMARY PRODUCTION, GROWTH, AND STANDING CROP OFMACROCYSTIS PYRIFERAIN SOUTHERN CALIFORNIA. Ecology, 2008, 89, 2068-2068.	3.2	22

#	Article	IF	CITATIONS
109	Mining the diatom genome for the mechanism of biosilicification. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1391-1392.	7.1	20
110	INTERACTIONS BETWEEN PULSED NUTRIENT SUPPLIES AND A PHOTOCYCLE AFFECT PHYTOPLANKTON COMPETITION FOR LIMITING NUTRIENTS IN LONG-TERM CULTURE. Journal of Phycology, 1988, 24, 346-356.	2.3	19
111	Heavy silicon isotopic composition of silicic acid and biogenic silica in Arctic waters over the Beaufort shelf and the Canada Basin. Global Biogeochemical Cycles, 2016, 30, 804-824.	4.9	18
112	A STUDY OF SI DEPOSITION SYNCHRONY IN RHIZOSOLENIA (BACILLARIOPHYCEAE) MATS USING A NOVEL 32SI AUTORADIOGRAPHIC METHOD. Journal of Phycology, 1999, 35, 995-1004.	2.3	17
113	Controls on the silicon isotope distribution in the ocean: New diagnostics from a dataâ€constrained model. Global Biogeochemical Cycles, 2015, 29, 267-287.	4.9	17
114	Distal and proximal controls on the silicon stable isotope signature of North Atlantic Deep Water. Earth and Planetary Science Letters, 2015, 432, 342-353.	4.4	17
115	Impaired viral infection and reduced mortality of diatoms in iron-limited oceanic regions. Nature Geoscience, 2021, 14, 231-237.	12.9	17
116	Siliceous plankton dominate primary and new productivity during the onset of El Niño conditions in the Santa Barbara Basin, California. Journal of Marine Systems, 2003, 42, 127-143.	2.1	16
117	Particulate silica and Si recycling in the surface waters of the Eastern Equatorial Pacific. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58, 449-461.	1.4	16
118	Net biogenic silica production and nitrate regeneration determine the strength of the silica pump in the Eastern Equatorial Pacific. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58, 462-476.	1.4	16
119	Chlorophyll bloom development and the subtropical front in the North Pacific. Journal of Geophysical Research: Oceans, 2013, 118, 1473-1488.	2.6	16
120	The changing roles of iron and vertical mixing in regulating nitrogen and silicon cycling in the Southern Ocean over the last glacial cycle. Paleoceanography, 2014, 29, 1179-1195.	3.0	16
121	INTERACTIONS BETWEEN PULSED NUTRIENT SUPPLIES AND A PHOTOCYCLE AFFECT PHYTOPLANKTON COMPETITION FOR LIMITING NUTRIENTS IN LONG-TERM CULTURE1. Journal of Phycology, 1988, 24, 346-356.	2.3	15
122	Theoretical constraints on the uptake of silicic acid species by marine diatoms. Marine Chemistry, 2003, 82, 13-29.	2.3	14
123	Quantifying diatom silicification with the fluorescent dye, PDMPO. Limnology and Oceanography: Methods, 2015, 13, 587-599.	2.0	14
124	Taxonâ€specific contributions to silica production in natural diatom assemblages. Limnology and Oceanography, 2018, 63, 1056-1075.	3.1	14
125	The chemical form of silicon in marine Synechococcus. Marine Chemistry, 2018, 206, 44-51.	2.3	14
126	Sources of phytoplankton to the inner continental shelf in the Santa Barbara Channel inferred from cross-shelf gradients in biological, physical and chemical parameters. Continental Shelf Research, 2012, 48, 27-39.	1.8	13

#	Article	IF	CITATIONS
127	Diatom response to alterations in upwelling and nutrient dynamics associated with climate forcing in the California Current System. Limnology and Oceanography, 2021, 66, 1578-1593.	3.1	12
128	New Constraints on the Physical and Biological Controls on the Silicon Isotopic Composition of the Arctic Ocean. Frontiers in Marine Science, 2021, 8, .	2.5	11
129	Biogenic silica standing stock and export in the Santa Barbara Channel ecosystem. Journal of Geophysical Research: Oceans, 2013, 118, 736-749.	2.6	10
130	Differential cell sinking as a factor influencing diatom species competition for limiting nutrients. Journal of Experimental Marine Biology and Ecology, 1988, 119, 179-200.	1.5	9
131	Evaluating Carbonate System Algorithms in a Nearshore System: Does Total Alkalinity Matter?. PLoS ONE, 2016, 11, e0165191.	2.5	9
132	Application of sephadex to radiochemical separations. Journal of Radioanalytical and Nuclear Chemistry, 1995, 195, 251-261.	1.5	7
133	Isopycnal Transport and Scavenging of ²³⁰ Th and ²³¹ Pa in the Pacific Southern Ocean. Clobal Biogeochemical Cycles, 2020, 34, e2020CB006760.	4.9	6
134	Diminished carbon and nitrate assimilation drive changes in diatom elemental stoichiometry independent of silicification in an iron-limited assemblage. ISME Communications, 2022, 2, .	4.2	6
135	Controls on Dissolved Silicon Isotopes Along the U.S. GEOTRACES Eastern Pacific Zonal Transect (GP16). Global Biogeochemical Cycles, 2020, 34, e2020GB006538.	4.9	5
136	A Test of the Diatomâ€Bound Paleoproxy: Tracing the Isotopic Composition of Nutrientâ€Nitrogen Into Southern Ocean Particles and Sediments. Global Biogeochemical Cycles, 2020, 34, e2019GB006508.	4.9	5
137	The interaction of physical and biological factors drives phytoplankton spatial distribution in the northern California Current. Limnology and Oceanography, 2020, 65, 1974-1989.	3.1	5
138	Controls on the Silicon Isotope Composition of Diatoms in the Peruvian Upwelling. Frontiers in Marine Science, 2021, 8, .	2.5	5
139	Factors influencing urea use by giant kelp (Macrocystis pyrifera , Phaeophyceae). Limnology and Oceanography, 2021, 66, 1190-1200.	3.1	5
140	A silicon isotopic perspective on the contribution of diagenesis to the sedimentary silicon budget in the Southern Ocean. Geochimica Et Cosmochimica Acta, 2022, 327, 298-313.	3.9	4
141	A Report on the Macroinvertebrates of the Columbia River Estuary Found in Deposits of Volcanic Ash from the May 18, 1980 Eruption of Mount St. Helens. Estuaries and Coasts, 1983, 6, 172.	1.7	2
142	Analysis of viability and cell types of macroalgal protoplasts using flow cytometry. Journal of Applied Phycology, 1995, 7, 413-420.	2.8	2
143	Diatom Physiology Controls Silicic Acid Leakage in Response to Iron Fertilization. Global Biogeochemical Cycles, 2019, 33, 1631-1653.	4.9	0
144	SILICON-32: DIATOMS, THE SILICON CYCLE, AND THE CLIMATE. , 2000, , .		0