
Jason P Hallett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8823442/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combining phytoremediation and biorefinery: Metal extraction from lead contaminated Miscanthus during pretreatment using the ionoSolv process. Industrial Crops and Products, 2022, 176, 114259.	2.5	7
2	Pretreatment of biomass with protic ionic liquids. Trends in Chemistry, 2022, 4, 175-178.	4.4	13
3	Application of a phosphonium-based ionic liquid for reactive textile dye removal: Extraction study and toxicological evaluation. Journal of Environmental Management, 2022, 304, 114322.	3.8	6
4	High yield and isolation of 2,5-furandicarboxylic acid from HMF and sugars in ionic liquids, a new prospective for the establishment of a scalable and efficient catalytic route. Green Chemistry, 2022, 24, 3309-3313.	4.6	17
5	Next generation strategy for tuning the thermoresponsive properties of micellar and hydrogel drug delivery vehicles using ionic liquids. Polymer Chemistry, 2022, 13, 2340-2350.	1.9	6
6	Techno-economic assessment for a pumped thermal energy storage integrated with open cycle gas turbine and chemical looping technology. Energy Conversion and Management, 2022, 255, 115332.	4.4	12
7	Sustainability Assessment of Alternative Synthesis Routes to Aprotic Ionic Liquids: The Case of 1-Butyl-3-methylimidazolium Tetrafluoroborate for Fuel Desulfurization. ACS Sustainable Chemistry and Engineering, 2022, 10, 323-331.	3.2	8
8	Effective pretreatment of lignin-rich coconut wastes using a low-cost ionic liquid. Scientific Reports, 2022, 12, 6108.	1.6	26
9	Physicochemical Characterization of Two Protic Hydroxyethylammonium Carboxylate Ionic Liquids in Water and Their Mixture. Journal of Chemical & Engineering Data, 2022, 67, 1309-1325.	1.0	5
10	Reclamation of nutrients, carbon, and metals from compromised surface waters fated to the Salton Sea: Biomass production and ecosystem services using an attached periphytic algae flow-way. Algal Research, 2022, 66, 102757.	2.4	1
11	Halometallate ionic liquids: thermal properties, decomposition pathways, and life cycle considerations. Green Chemistry, 2022, 24, 5800-5812.	4.6	9
12	New Biobased Sulfonated Anionic Surfactants Based on the Esterification of Furoic Acid and Fatty Alcohols: A Green Solution for the Replacement of Oil Derivative Surfactants with Superior Proprieties. ACS Sustainable Chemistry and Engineering, 2022, 10, 8846-8855.	3.2	8
13	Solventâ€free liquid avidin as a step toward cold chain elimination. Biotechnology and Bioengineering, 2021, 118, 592-600.	1.7	8
14	A life cycle approach to solvent design: challenges and opportunities for ionic liquids – application to CO ₂ capture. Reaction Chemistry and Engineering, 2021, 6, 258-278.	1.9	9
15	Exploring conformational preferences of proteins: ionic liquid effects on the energy landscape of avidin. Chemical Science, 2021, 12, 196-209.	3.7	8
16	Characterization and Valorization of Humins Produced by HMF Degradation in Ionic Liquids: A Valuable Carbonaceous Material for Antimony Removal. ACS Sustainable Chemistry and Engineering, 2021, 9, 2212-2223.	3.2	30
17	Protein from renewable resources: mycoprotein production from agricultural residues. Green Chemistry, 2021, 23, 5150-5165.	4.6	42
18	Uncertainty analysis in life-cycle assessment of early-stage processes and products: a case study in dialkyl-imidazolium ionic liquids. Computer Aided Chemical Engineering, 2021, 50, 785-790.	0.3	1

#	Article	IF	CITATIONS
19	Rhododendron and Japanese Knotweed: invasive species as innovative crops for second generation biofuels for the ionoSolv process. RSC Advances, 2021, 11, 18395-18403.	1.7	13
20	Hazardous Creosote Wood Valorization via Fractionation and Enzymatic Saccharification Coupled with Simultaneous Extraction of the Embedded Polycyclic Aromatic Hydrocarbons Using Protic Ionic Liquid Media. ACS Sustainable Chemistry and Engineering, 2021, 9, 704-716.	3.2	13
21	Process Analysis of Ionic Liquid-Based Blends as H ₂ S Absorbents: Search for Thermodynamic/Kinetic Synergies. ACS Sustainable Chemistry and Engineering, 2021, 9, 2080-2088.	3.2	15
22	From sugars to FDCA: a techno-economic assessment using a design concept based on solvent selection and carbon dioxide emissions. Green Chemistry, 2021, 23, 1716-1733.	4.6	47
23	Controlling surface chemistry and mechanical properties of metal ionogels through Lewis acidity and basicity. Journal of Materials Chemistry A, 2021, 9, 4679-4686.	5.2	3
24	An experimental approach probing the conformational transitions and energy landscape of antibodies: a glimmer of hope for reviving lost therapeutic candidates using ionic liquid. Chemical Science, 2021, 12, 9528-9545.	3.7	14
25	Beyond 90% capture: Possible, but at what cost?. International Journal of Greenhouse Gas Control, 2021, 105, 103239.	2.3	74
26	Demetallization of Sewage Sludge Using Low-Cost Ionic Liquids. Environmental Science & Technology, 2021, 55, 5291-5300.	4.6	15
27	Production of oligosaccharides and biofuels from Miscanthus using combinatorial steam explosion and ionic liquid pretreatment. Bioresource Technology, 2021, 323, 124625.	4.8	49
28	Evaluation of N,N,N-Dimethylbutylammonium Methanesulfonate Ionic liquid for electrochemical recovery of lead from lead-acid batteries. Electrochimica Acta, 2021, 376, 137893.	2.6	6
29	Linking the Thermal and Electronic Properties of Functional Dicationic Salts with Their Molecular Structures. ACS Sustainable Chemistry and Engineering, 2021, 9, 6224-6234.	3.2	8
30	Production of Food-Grade Glucose from Rice and Wheat Residues Using a Biocompatible Ionic Liquid. ACS Sustainable Chemistry and Engineering, 2021, 9, 8080-8089.	3.2	17
31	Evaluating the Role of Water as a Cosolvent and an Antisolvent in [HSO ₄]-Based Protic Ionic Liquid Pretreatment. ACS Sustainable Chemistry and Engineering, 2021, 9, 10524-10536.	3.2	30
32	Process intensification of the ionoSolv pretreatment: effects of biomass loading, particle size and scale-up from 10ÂmL to 1ÂL. Scientific Reports, 2021, 11, 15383.	1.6	15
33	In-depth process parameter investigation into a protic ionic liquid pretreatment for 2G ethanol production. Renewable Energy, 2021, 172, 816-828.	4.3	21
34	Biorefinery potential of sustainable municipal wastewater treatment using fast-growing willow. Science of the Total Environment, 2021, 792, 148146.	3.9	18
35	Evaluating the potential of a novel hardwood biomass using a superbase ionic liquid. RSC Advances, 2021, 11, 19095-19105.	1.7	15
36	Expanding the design space of gel materials through ionic liquid mediated mechanical and structural tuneability. Materials Horizons, 2020, 7, 820-826.	6.4	12

#	Article	IF	CITATIONS
37	Thermal Stability and Explosive Hazard Assessment of Diazo Compounds and Diazo Transfer Reagents. Organic Process Research and Development, 2020, 24, 67-84.	1.3	166
38	Implications for Heavy Metal Extractions from Hyper Saline Brines with [NTf2]â^ Ionic Liquids: Performance, Solubility, and Cost. Industrial & Engineering Chemistry Research, 2020, 59, 12536-12544.	1.8	7
39	Protein from Renewable Resources: Mycoprotein Production from Agricultural Residues. Computer Aided Chemical Engineering, 2020, 48, 985-990.	0.3	4
40	Uncovering the True Cost of Ionic Liquids using Monetization. Computer Aided Chemical Engineering, 2020, 48, 1825-1830.	0.3	6
41	Design of a combined ionosolv-organosolv biomass fractionation process for biofuel production and high value-added lignin valorisation. Green Chemistry, 2020, 22, 5161-5178.	4.6	50
42	Electrodeposition of lead from methanesulfonic acid and methanesulfonate ionic liquid derivatives. Electrochimica Acta, 2020, 353, 136460.	2.6	15
43	Thermolysis of Organofluoroborate Ionic Liquids to NHC-Organofluoroborates. ACS Sustainable Chemistry and Engineering, 2020, 8, 16386-16390.	3.2	2
44	Toward a Circular Economy: Decontamination and Valorization of Postconsumer Waste Wood Using the ionoSolv Process. ACS Sustainable Chemistry and Engineering, 2020, 8, 14441-14461.	3.2	20
45	On the Use of Differential Scanning Calorimetry for Thermal Hazard Assessment of New Chemistry: Avoiding Explosive Mistakes. Angewandte Chemie, 2020, 132, 15930-15934.	1.6	5
46	On the Use of Differential Scanning Calorimetry for Thermal Hazard Assessment of New Chemistry: Avoiding Explosive Mistakes. Angewandte Chemie - International Edition, 2020, 59, 15798-15802.	7.2	30
47	Use of phosphonium ionic liquids for highly efficient extraction of phenolic compounds from water. Separation and Purification Technology, 2020, 248, 117069.	3.9	43
48	Towards an environmentally and economically sustainable biorefinery: heavy metal contaminated waste wood as a low-cost feedstock in a low-cost ionic liquid process. Green Chemistry, 2020, 22, 5032-5041.	4.6	24
49	Exploring the Effect of Water Content and Anion on the Pretreatment of Poplar with Three 1-Ethyl-3-methylimidazolium Ionic Liquids. Molecules, 2020, 25, 2318.	1.7	10
50	Revealing the complexity of ionic liquid–protein interactions through a multi-technique investigation. Communications Chemistry, 2020, 3, .	2.0	56
51	Assessing the economic viability of wetland remediation of wastewater, and the potential for parallel biomass valorisation. Environmental Science: Water Research and Technology, 2020, 6, 2103-2121.	1.2	4
52	Characterisation of cellulose pulps isolated from Miscanthus using a low-cost acidic ionic liquid. Cellulose, 2020, 27, 4745-4761.	2.4	39
53	Techno-economic assessment of biomass gasification-based mini-grids for productive energy applications: The case of rural India. Renewable Energy, 2020, 154, 432-444.	4.3	82
54	Efficient Formation of 2,5-Diformylfuran in Ionic Liquids at High Substrate Loadings and Low Oxygen Pressure with Separation through Sublimation. ACS Sustainable Chemistry and Engineering, 2020, 8, 2462-2471.	3.2	30

#	Article	IF	CITATIONS
55	Fractionation by Sequential Antisolvent Precipitation of Grass, Softwood, and Hardwood Lignins Isolated Using Low-Cost Ionic Liquids and Water. ACS Sustainable Chemistry and Engineering, 2020, 8, 3751-3761.	3.2	34
56	Interplay of Acid–Base Ratio and Recycling on the Pretreatment Performance of the Protic Ionic Liquid Monoethanolammonium Acetate. ACS Sustainable Chemistry and Engineering, 2020, 8, 7952-7961.	3.2	36
57	Role of life-cycle externalities in the valuation of protic ionic liquids – a case study in biomass pretreatment solvents. Green Chemistry, 2020, 22, 3132-3140.	4.6	76
58	<i>Eucalyptus red grandis</i> pretreatment with protic ionic liquids: effect of severity and influence of sub/super-critical CO ₂ atmosphere on pretreatment performance. RSC Advances, 2020, 10, 16050-16060.	1.7	18
59	lon chromatography for monitoring [NTf ₂] ^{â^'} anion contaminants in pure and saline water. Analytical Methods, 2020, 12, 2244-2252.	1.3	8
60	Commercial Aspects of Biomass Deconstruction with Ionic Liquids. Green Chemistry and Sustainable Technology, 2020, , 87-127.	0.4	9
61	Thermally-Stable Imidazolium Dicationic Ionic Liquids with Pyridine Functional Groups. ACS Sustainable Chemistry and Engineering, 2020, 8, 8762-8772.	3.2	25
62	Oxidative ionothermal synthesis for micro and macro Zn-based materials. Materials Advances, 2020, 1, 3597-3604.	2.6	7
63	Thermally robust solvent-free biofluids of M13 bacteriophage engineered for high compatibility with anhydrous ionic liquids. Chemical Communications, 2019, 55, 10752-10755.	2.2	7
64	Strategies for the Separation of the Furanic Compounds HMF, DFF, FFCA, and FDCA from Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2019, 7, 16483-16492.	3.2	50
65	Recent advances in the pretreatment of lignocellulosic biomass. Current Opinion in Green and Sustainable Chemistry, 2019, 20, 11-17.	3.2	135
66	Rapid, High‥ield Fructose Dehydration to 5â€Hydroxymethylfurfural in Mixtures of Water and the Noncoordinating Ionic Liquid [bmim][OTf]. ChemSusChem, 2019, 12, 4452-4460.	3.6	31
67	Zinc 1s Valence-to-Core X-ray Emission Spectroscopy of Halozincate Complexes. Journal of Physical Chemistry A, 2019, 123, 9552-9559.	1.1	18
68	From waste to food: Optimising the breakdown of oil palm waste to provide substrate for insects farmed as animal feed. PLoS ONE, 2019, 14, e0224771.	1.1	12
69	Quantitative glucose release from softwood after pretreatment with low-cost ionic liquids. Green Chemistry, 2019, 21, 692-703.	4.6	111
70	From Lignin to Chemicals: Hydrogenation of Lignin Models and Mechanistic Insights into Hydrodeoxygenation via Low-Temperature C–O Bond Cleavage. ACS Catalysis, 2019, 9, 2345-2354.	5.5	48
71	Developments in electrochemical processes for recycling lead–acid batteries. Current Opinion in Electrochemistry, 2019, 16, 83-89.	2.5	65
72	Efficient Fractionation of Lignin- and Ash-Rich Agricultural Residues Following Treatment With a Low-Cost Protic Ionic Liquid. Frontiers in Chemistry, 2019, 7, 246.	1.8	35

#	Article	IF	CITATIONS
73	Diazo-Transfer Reagent 2-Azido-4,6-dimethoxy-1,3,5-triazine Displays Highly Exothermic Decomposition Comparable to Tosyl Azide. Journal of Organic Chemistry, 2019, 84, 5893-5898.	1.7	16
74	The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: Review of the state of art and future research directions. Progress in Energy and Combustion Science, 2019, 71, 1-80.	15.8	316
75	Ionic Liquids. RSC Energy and Environment Series, 2019, , 69-105.	0.2	0
76	Ionic Liquids as Solvents for the Production of Materials from Biomass. , 2019, , 1-22.		0
77	Use of ionic liquids to remove harmful M ²⁺ contaminants from hydrocarbon streams. Molecular Systems Design and Engineering, 2018, 3, 408-417.	1.7	6
78	Green and Sustainable Solvents in Chemical Processes. Chemical Reviews, 2018, 118, 747-800.	23.0	1,253
79	Carbon capture and storage (CCS): the way forward. Energy and Environmental Science, 2018, 11, 1062-1176.	15.6	2,378
80	Pretreatment of South African sugarcane bagasse using a low-cost protic ionic liquid: a comparison of whole, depithed, fibrous and pith bagasse fractions. Biotechnology for Biofuels, 2018, 11, 247.	6.2	64
81	Lead acid battery recycling for the twenty-first century. Royal Society Open Science, 2018, 5, 171368.	1.1	65
82	Challenges and opportunities for the utilisation of ionic liquids as solvents for CO ₂ capture. Molecular Systems Design and Engineering, 2018, 3, 560-571.	1.7	68
83	Use of ionic liquids to minimize sodium induced internal diesel injector deposits (IDIDs). Molecular Systems Design and Engineering, 2018, 3, 397-407.	1.7	7
84	Rapid pretreatment of <i>Miscanthus</i> using the low-cost ionic liquid triethylammonium hydrogen sulfate at elevated temperatures. Green Chemistry, 2018, 20, 3486-3498.	4.6	100
85	Non-aqueous homogenous biocatalytic conversion of polysaccharides in ionic liquids using chemically modified glucosidase. Nature Chemistry, 2018, 10, 859-865.	6.6	75
86	Solvation Behavior of Ionic Liquids and Their Role in the Production of Lignocellulosic Biofuels and Sustainable Chemical Feedstocks. Series on Chemistry, Energy and the Environment, 2018, , 77-134.	0.3	1
87	An economically viable ionic liquid for the fractionation of lignocellulosic biomass. Green Chemistry, 2017, 19, 3078-3102.	4.6	296
88	Effect of pretreatment severity on the cellulose and lignin isolated from Salix using ionoSolv pretreatment. Faraday Discussions, 2017, 202, 331-349.	1.6	67
89	Screening Solvents Properties for CO2 Capture Based on the Process Performance. Energy Procedia, 2017, 114, 1551-1557.	1.8	5
90	Evidence for the spontaneous formation of N-heterocyclic carbenes in imidazolium based ionic liquids. Chemical Communications, 2017, 53, 11154-11156.	2.2	29

#	Article	IF	CITATIONS
91	Ultra-Low Cost Ionic Liquids for the Delignification of Biomass. ACS Symposium Series, 2017, , 209-223.	0.5	15
92	Conversion technologies: general discussion. Faraday Discussions, 2017, 202, 371-389.	1.6	0
93	Solvent selection and design for CO ₂ capture – how we might have been missing the point. Sustainable Energy and Fuels, 2017, 1, 2078-2090.	2.5	69
94	An easy and reliable method for syringyl: guaiacyl ratio measurement. Tappi Journal, 2017, 16, 145-152.	0.2	1
95	Direct Catalytic Conversion of Cellulose to 5-Hydroxymethylfurfural Using Ionic Liquids. Inorganics, 2016, 4, 32.	1.2	26
96	Solubility of alkali metal halides in the ionic liquid [C ₄ C ₁ im][OTf]. Physical Chemistry Chemical Physics, 2016, 18, 16161-16168.	1.3	25
97	Investigation of the Chemocatalytic and Biocatalytic Valorization of a Range of Different Lignin Preparations: The Importance of β-O-4 Content. ACS Sustainable Chemistry and Engineering, 2016, 4, 6921-6930.	3.2	74
98	Homogeneous Catalyzed Reactions of Levulinic Acid: To γâ€Valerolactone and Beyond. ChemSusChem, 2016, 9, 2037-2047.	3.6	120
99	Oxidative Depolymerization of Lignin Using a Novel Polyoxometalate-Protic Ionic Liquid System. ACS Sustainable Chemistry and Engineering, 2016, 4, 6031-6036.	3.2	89
100	Mechanistic insights into lignin depolymerisation in acidic ionic liquids. Green Chemistry, 2016, 18, 5456-5465.	4.6	93
101	Pretreatment of Lignocellulosic Biomass with Low-cost Ionic Liquids. Journal of Visualized Experiments, 2016, , .	0.2	45
102	Solubilizing and Stabilizing Proteins in Anhydrous Ionic Liquids through Formation of Protein–Polymer Surfactant Nanoconstructs. Journal of the American Chemical Society, 2016, 138, 4494-4501.	6.6	87
103	A structural investigation of ionic liquid mixtures. Physical Chemistry Chemical Physics, 2016, 18, 8608-8624.	1.3	93
104	Techno-economic assessment of the production of phthalic anhydride from corn stover. Chemical Engineering Research and Design, 2016, 107, 181-194.	2.7	29
105	Lignin oxidation and depolymerisation in ionic liquids. Green Chemistry, 2016, 18, 834-841.	4.6	111
106	The Highly Selective and Near-Quantitative Conversion of Glucose to 5-Hydroxymethylfurfural Using Ionic Liquids. PLoS ONE, 2016, 11, e0163835.	1.1	34
107	Diffusion Coefficients of Carbon Dioxide in Brines Measured Using ¹³ C Pulsed-Field Gradient Nuclear Magnetic Resonance. Journal of Chemical & Engineering Data, 2015, 60, 181-184.	1.0	26
108	Production of phthalic anhydride from biorenewables: process design. Computer Aided Chemical Engineering, 2015, , 2561-2566.	0.3	3

#	Article	IF	CITATIONS
109	Structural changes in lignins isolated using an acidic ionic liquid water mixture. Green Chemistry, 2015, 17, 5019-5034.	4.6	159
110	Design of low-cost ionic liquids for lignocellulosic biomass pretreatment. Green Chemistry, 2015, 17, 1728-1734.	4.6	384
111	Extended scale for the hydrogen-bond basicity of ionic liquids. Physical Chemistry Chemical Physics, 2014, 16, 6593.	1.3	218
112	Fractionation of lignocellulosic biomass with the ionic liquid 1-butylimidazolium hydrogen sulfate. Green Chemistry, 2014, 16, 1617.	4.6	148
113	Carbon capture and storage update. Energy and Environmental Science, 2014, 7, 130-189.	15.6	1,765
114	Inexpensive ionic liquids: [HSO ₄] ^{â^'} -based solvent production at bulk scale. Green Chemistry, 2014, 16, 3098-3106.	4.6	309
115	A quick, simple, robust method to measure the acidity of ionic liquids. Chemical Communications, 2014, 50, 7258-7261.	2.2	28
116	New Experimental Density Data and Soft-SAFT Models of Alkylimidazolium ([C _{<i>n</i>} C ₁ im] ⁺) Chloride (Cl [–]), Methylsulfate ([MeSO ₄] ^{â^`}), and Dimethylphosphate ([Me ₂ PO ₄] ^{â^`}) Based Ionic Liquids. Journal of Physical Chemistry B, 2014, 118, 6206-6221.	1.2	65
117	Highly Selective and Near-Quantitative Conversion of Fructose to 5-Hydroxymethylfurfural Using Mildly Acidic Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2014, 2, 978-981.	3.2	67
118	Deconstruction of lignocellulosic biomass with ionic liquids. Green Chemistry, 2013, 15, 550.	4.6	1,243
119	Systems Designed with an Ionic Liquid and Molecular Solvents to Investigate the Kinetics of an S _N Ar Reaction. Progress in Reaction Kinetics and Mechanism, 2013, 38, 157-170.	1.1	2
120	Mixtures of ionic liquids. Chemical Society Reviews, 2012, 41, 7780.	18.7	520
121	Application of VIVO(acac)2 type complexes in the desulfurization of fuels with ionic liquids. Catalysis Today, 2012, 196, 119-125.	2.2	13
122	Soaking of pine wood chips with ionic liquids for reduced energy input during grinding. Green Chemistry, 2012, 14, 1079.	4.6	35
123	Structural characterization and DFT study of VIVO(acac)2 in imidazolium ionic liquids. Physical Chemistry Chemical Physics, 2011, 13, 15094.	1.3	20
124	Understanding the polarity of ionic liquids. Physical Chemistry Chemical Physics, 2011, 13, 16831.	1.3	454
125	Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis. 2. Chemical Reviews, 2011, 111, 3508-3576.	23.0	4,688
126	Salts dissolved in salts: ionic liquid mixtures. Chemical Science, 2011, 2, 1491.	3.7	178

#	Article	IF	CITATIONS
127	Understanding siloxane functionalised ionic liquids. Physical Chemistry Chemical Physics, 2010, 12, 2018.	1.3	37
128	The effect of the ionic liquid anion in the pretreatment of pine wood chips. Green Chemistry, 2010, 12, 672.	4.6	294
129	An overview of CO2 capture technologies. Energy and Environmental Science, 2010, 3, 1645.	15.6	1,376
130	How Polar are Ionic Liquids?. ECS Transactions, 2009, 16, 33-38.	0.3	12
131	Esterification in Ionic Liquids: The Influence of Solvent Basicity. ECS Transactions, 2009, 16, 103-106.	0.3	0
132	In Search of an "Ionic Liquid Effect". ECS Transactions, 2009, 16, 81-87.	0.3	5
133	Charge Screening in the S _N 2 Reaction of Charged Electrophiles and Charged Nucleophiles: An Ionic Liquid Effect. Journal of Organic Chemistry, 2009, 74, 1864-1868.	1.7	98
134	In Situ Alkylcarbonic Acid Catalysts Formed in CO2-Expanded Alcohols. ACS Symposium Series, 2009, , 131-144.	0.5	1
135	Epoxidation of alkenes by Oxoneâ,,¢ using 2-alkyl-3,4-dihydroisoquinolinium salts as catalysts in ionic liquids. Journal of Molecular Catalysis A, 2008, 279, 148-152.	4.8	24
136	Reversible <i>in Situ</i> Catalyst Formation. Accounts of Chemical Research, 2008, 41, 458-467.	7.6	39
137	Nucleophilic Reactions at Cationic Centers in Ionic Liquids and Molecular Solvents. Industrial & Engineering Chemistry Research, 2008, 47, 638-644.	1.8	66
138	Melting Point Depression of Ionic Liquids with CO ₂ :  Phase Equilibria. Industrial & Engineering Chemistry Research, 2008, 47, 493-501.	1.8	69
139	Esterification in Ionic Liquids: The Influence of Solvent Basicity. Journal of Organic Chemistry, 2008, 73, 5585-5588.	1.7	60
140	Hydroformylation Catalyst Recycle with Gas-Expanded Liquids. Industrial & Engineering Chemistry Research, 2008, 47, 2585-2589.	1.8	36
141	A Spectroscopic and Computational Exploration of the Cybotactic Region of Gas-Expanded Liquids: Methanol and Acetone. Journal of Physical Chemistry B, 2008, 112, 4666-4673.	1.2	23
142	Ionic Liquids as Vehicles for Reactions and Separations. ACS Symposium Series, 2007, , 198-211.	0.5	4
143	Coupling chiral homogeneous biocatalytic reactions with benign heterogeneous separation. Green Chemistry, 2007, 9, 888.	4.6	26
144	Self-Neutralizing in Situ Acid Catalysis for Single-Pot Synthesis of Iodobenzene and Methyl Yellow in CO ₂ -Expanded Methanol. Industrial & Engineering Chemistry Research, 2007, 46, 5252-5257.	1.8	31

#	Article	IF	CITATIONS
145	Tunable solvents for fine chemicals from the biorefinery. Green Chemistry, 2007, 9, 545.	4.6	58
146	Piperylene sulfone: a labile and recyclable DMSO substitute. Chemical Communications, 2007, , 1427.	2.2	50
147	Liquid–liquid equilibria and partitioning in organic–aqueous systems. Fluid Phase Equilibria, 2007, 253, 48-53.	1.4	8
148	The Path Forward for Biofuels and Biomaterials. Science, 2006, 311, 484-489.	6.0	4,935
149	Probing the Cybotactic Region in Gas-Expanded Liquids (GXLs). Accounts of Chemical Research, 2006, 39, 531-538.	7.6	65
150	Molecular Dynamics Simulation of the Cybotactic Region in Gas-Expanded Methanolâ^'Carbon Dioxide and Acetoneâ~'Carbon Dioxide Mixtures. Journal of Physical Chemistry B, 2006, 110, 24101-24111.	1.2	36
151	Vapor–liquid–liquid equilibria of perfluorohexane+CO2+methanol, +toluene, and +acetone at 313K. Fluid Phase Equilibria, 2006, 241, 20-24.	1.4	6
152	From wood to fuels: Integrating biofuels and pulp production. Industrial Biotechnology, 2006, 2, 55-65.	0.5	213
153	Self-neutralizing in situ Acid Catalysts from CO2. Topics in Catalysis, 2006, 37, 75-80.	1.3	35
154	Biocatalytic Reaction And Recycling by Using CO2-Induced Organic–Aqueous Tunable Solvents. Angewandte Chemie - International Edition, 2006, 45, 4670-4673.	7.2	27
155	Determination of solvatochromic solvent parameters for the characterization of gas-expanded liquids. Journal of Supercritical Fluids, 2005, 36, 16-22.	1.6	97
156	High-pressure phase equilibria of some carbon dioxide–organic–water systems. Fluid Phase Equilibria, 2004, 224, 143-154.	1.4	54
157	Sustainable Reactions in Tunable Solvents. Journal of Physical Chemistry B, 2004, 108, 18108-18118.	1.2	150
158	Tunable Solvents for Homogeneous Catalyst Recycle. Industrial & Engineering Chemistry Research, 2004, 43, 1586-1590.	1.8	61
159	CO2-Induced Miscibility of Fluorous and Organic Solvents for Recycling Homogeneous Catalysts. Industrial & Engineering Chemistry Research, 2004, 43, 4827-4832.	1.8	51
160	Use and recovery of a homogeneous catalyst with carbon dioxide as a solubility switchElectronic supplementary information (ESI) available: methods of preparation of fluorous silica and complexes 1 and 2. See http://www.rsc.org/suppdata/cc/b3/b311146f/. Chemical Communications, 2003, , 2972.	2.2	46
161	Phase-Transfer-Catalyzed Alkylation of Phenylacetonitrile in Supercritical Ethane. Industrial & Engineering Chemistry Research, 2002, 41, 1763-1767.	1.8	6
162	Liquidâ^'Liquid Equilibria for Binary Mixtures of Water + Acetophenone, + 1-Octanol, + Anisole, and + Toluene from 370 K to 550 K. Journal of Chemical & Engineering Data, 2000, 45, 846-850.	1.0	43

#	Article	IF	CITATIONS
163	Reactions in Nearcritical Water. , 0, , 256-300.		6