Jih-Mirn Jehng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/882327/publications.pdf Version: 2024-02-01

IIH-MIDN FHNC

#	Article	IF	CITATIONS
1	Structural chemistry and Raman spectra of niobium oxides. Chemistry of Materials, 1991, 3, 100-107.	6.7	598
2	Alumina-Supported Manganese Oxide Catalysts. Journal of Catalysis, 1994, 150, 94-104.	6.2	403
3	Acidic properties of supported niobium oxide catalysts: An infrared spectroscopy investigation. Journal of Catalysis, 1992, 135, 186-199.	6.2	337
4	Identification of molybdenum oxide nanostructures on zeolites for natural gas conversion. Science, 2015, 348, 686-690.	12.6	310
5	Reactivity of V2O5Catalysts for the Selective Catalytic Reduction of NO by NH3: Influence of Vanadia Loading, H2O, and SO2. Journal of Catalysis, 1996, 161, 247-253.	6.2	253
6	Combined DRS–RS–EXAFS–XANES–TPR study of supported chromium catalysts. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 3245-3253.	1.7	188
7	Molecular structure and reactivity of the Group V metal oxides. Catalysis Today, 2003, 78, 13-24.	4.4	182
8	The effect of the phase composition of model VPO catalysts for partial oxidation of n-butane. Catalysis Today, 1996, 28, 275-295.	4.4	169
9	The molecular structures and reactivity of supported niobium oxide catalysts. Catalysis Today, 1990, 8, 37-55.	4.4	151
10	Effect of water vapor on the molecular structures of supported vanadium oxide catalysts at elevated temperatures. Journal of Molecular Catalysis A, 1996, 110, 41-54.	4.8	140
11	In Situ UV–vis–NIR Diffuse Reflectance and Raman Spectroscopic Studies of Propane Oxidation over ZrO2-Supported Vanadium Oxide Catalysts. Journal of Catalysis, 2002, 209, 43-50.	6.2	139
12	Molecular structure and reactivity of the group V metal oxides. Catalysis Today, 2000, 57, 323-330.	4.4	138
13	Fundamental Studies of Butane Oxidation over Model-Supported Vanadium Oxide Catalysts: Molecular Structure-Reactivity Relationships. Journal of Catalysis, 1997, 170, 75-88.	6.2	132
14	In Situ Raman Spectroscopy of Supported Transition Metal Oxide Catalysts:Â18O2â^16O2Isotopic Labeling Studies. Journal of Physical Chemistry B, 2000, 104, 7382-7387.	2.6	131
15	Determination of the Chemical Nature of Active Surface Sites Present on Bulk Mixed Metal Oxide Catalystsâ€. Journal of Physical Chemistry B, 2005, 109, 2275-2284.	2.6	113
16	The formation of titanium oxide monolayer coatings on silica surfaces. Journal of Catalysis, 1991, 131, 260-275.	6.2	100
17	Quantitative determination of the number of surface active sites and the turnover frequency for methanol oxidation over bulk metal vanadates. Catalysis Today, 2003, 78, 257-268.	4.4	100
18	In situ Raman spectroscopy studies of bulk and surface metal oxide phases during oxidation reactions. Catalysis Today, 1996, 32, 47-55.	4.4	98

Jih-Mirn Jehng

#	Article	IF	CITATIONS
19	Redox properties of niobium oxide catalysts. Catalysis Today, 1996, 28, 199-205.	4.4	91
20	Niobium oxide solution chemistry. Journal of Raman Spectroscopy, 1991, 22, 83-89.	2.5	82
21	In SituRaman Spectroscopy during the Partial Oxidation of Methane to Formaldehyde over Supported Vanadium Oxide Catalysts. Journal of Catalysis, 1997, 165, 91-101.	6.2	78
22	Surface modified niobium oxide catalyst: synthesis, characterization, and catalysis. Applied Catalysis A: General, 1992, 83, 179-200.	4.3	72
23	Molecular structures of supported niobium oxide catalysts under ambient conditions. Journal of Molecular Catalysis, 1991, 67, 369-387.	1.2	71
24	Spectroscopic and Computational Study of Cr Oxide Structures and Their Anchoring Sites on ZSM-5 Zeolites. ACS Catalysis, 2015, 5, 3078-3092.	11.2	68
25	Molecular design of supported metal oxide catalysts: An initial step to theoretical models. Journal of Molecular Catalysis, 1993, 82, 443-455.	1.2	67
26	Molecular design of supported niobium oxide catalysts. Catalysis Today, 1993, 16, 417-426.	4.4	63
27	Comparison of alcohol and alkane oxidative dehydrogenation reactions over supported vanadium oxide catalysts: in situ infrared, Raman and UV–vis spectroscopic studies of surface alkoxide intermediates and of their surface chemistry. Catalysis Today, 2005, 99, 105-114.	4.4	55
28	Surface chemistry of silica–titania-supported chromium oxide catalysts. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 953-961.	1.7	54
29	The synthesis, characterization of oxidized multi-walled carbon nanotubes, and application to surface acoustic wave quartz crystal gas sensor. Materials Chemistry and Physics, 2008, 109, 148-155.	4.0	48
30	Interactions between Surface Vanadate and Surface Sulfate Species on Metal Oxide Catalysts. Journal of Physical Chemistry B, 1998, 102, 6212-6218.	2.6	46
31	The molecular structures and reactivity of V2O5/TiO2/SiO2 catalysts. Catalysis Letters, 1992, 13, 9-19.	2.6	45
32	In Situ UVâ^'Visâ^'NIR Diffuse Reflectance and Raman Spectroscopy and Catalytic Activity Studies of Propane Oxidative Dehydrogenation over Supported CrO3/ZrO2Catalysts. Langmuir, 2004, 20, 7159-7165.	3.5	45
33	Highly dispersed Ag nanoparticles on modified carbon nanotubes for low-temperature CO oxidation. Applied Catalysis B: Environmental, 2011, 103, 221-225.	20.2	42
34	Hydrotalcite-like compounds containing transition metals as solid base catalysts for transesterification. Chemical Engineering Journal, 2011, 175, 548-554.	12.7	39
35	Selective Oxidation of 1-Butene over Silica-Supported Cr(VI), Mo(VI), and W(VI) Oxides. Journal of Catalysis, 1998, 176, 143-154.	6.2	38
36	XAFS study of niobium oxide on alumina. Catalysis Today, 1996, 28, 71-78.	4.4	35

Jih-Mirn Jehng

#	Article	IF	CITATIONS
37	Vanadyl(IV) Phosphonates, VOCnH2n+1PO3.cntdot.xH2O (n = 0-4, x = 1 or 1.5), as Precursors of Vanadyl(IV) Pyrophosphate, (VO)2P2O7. Chemistry of Materials, 1995, 7, 1493-1498.	6.7	29
38	Title is missing!. Catalysis Letters, 2003, 85, 73-80.	2.6	29
39	Thermokinetic model simulations for methyl ethyl ketone peroxide contaminated with H2SO4 OR NaOH by DSC and VSP2. Journal of Thermal Analysis and Calorimetry, 2006, 83, 57-62.	3.6	29
40	The formation mechanisms of multi-wall carbon nanotubes over the Ni modified MCM-41 catalysts. Journal of Porous Materials, 2008, 15, 43-51.	2.6	28
41	Synthesis and characterization of carbon nanotubes on clay minerals and its application to a hydrogen peroxide biosensor. Materials Science and Engineering C, 2009, 29, 55-61.	7.3	24
42	Calorimetric studies on the thermal hazard of methyl ethyl ketone peroxide with incompatible substances. Journal of Hazardous Materials, 2007, 141, 762-768.	12.4	22
43	Raman characterization of alumina supported Moî—,Vî—,Fe catalysts: Influence of calcination temperature. Journal of Molecular Catalysis, 1993, 81, 63-75.	1.2	21
44	Amination of Polyethylene Glycol to Polyetheramine over the Supported Nickel Catalysts. Catalysis Letters, 2001, 77, 147-154.	2.6	21
45	Surface activation on multi-wall carbon nanotube for electrochemical capacitor applications. Applied Surface Science, 2012, 258, 3027-3032.	6.1	19
46	Molecular structure and sour gas surface chemistry of supported K2O/WO3/Al2O3 catalysts. Applied Catalysis B: Environmental, 2018, 232, 146-154.	20.2	19
47	Structural characteristics and reactivity properties of the tantalum modified mesoporous silicalite (MCM-41) catalysts. Microporous and Mesoporous Materials, 2007, 99, 299-307.	4.4	16
48	Water effect on the surface morphology of TiO2 thin film modified by polyethylene glycol. Applied Surface Science, 2013, 264, 470-475.	6.1	16
49	Structure Control of Metal Aluminum Phosphate (MeAIPO-5) Molecular Sieves and Applications in Polyethylene Glycol Amination. Catalysis Letters, 2004, 93, 213-223.	2.6	7
50	Experimental methods in chemical engineering: Temperature programmed surface reaction spectroscopy— <scp>TPSR</scp> . Canadian Journal of Chemical Engineering, 2021, 99, 423-434.	1.7	7
51	Synthesis, characterization and electrochemical properties of Fe/MnO2 nanoparticles prepared by using sol–gel reaction. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 475-480.	5.3	6
52	Ni-based nanocomposites supported on graphene nano sheet (GNS) for supercapacitor applications. Journal of Solid State Electrochemistry, 2014, 18, 189-196.	2.5	5
53	The formation of (NH4)2V6O16 phase in the synthesized InVO4 for the hydrogen evolving applications. Catalysis Communications, 2018, 103, 19-23.	3.3	4
54	Photocatalytic activity of the (NH4)2V6O16/g-C3N4 composite catalysts for water splitting applications. Catalysis Today, 2019, 325, 41-46.	4.4	4