Subray V Bhat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8823084/publications.pdf

Version: 2024-02-01

180 papers 3,597 citations

28 h-index 53 g-index

185 all docs 185
docs citations

185 times ranked 3788 citing authors

#	Article	IF	CITATIONS
1	Growth of manganite nanoparticles with narrow size distribution using reverse micelle method. IOP Conference Series: Materials Science and Engineering, 2022, 1221, 012041.	0.6	1
2	Magnetic and electron paramagnetic resonance studies of $Ln0.5Ca0.5MnO3$ ($Ln = Pr, Bi$) manganite. AlP Advances, 2021, 11, 015144.	1.3	3
3	Size dependence of charge order and magnetism in Sm0.35Ca0.65MnO3. AIP Advances, 2021, 11, 025313.	1.3	2
4	Signatures of field-induced Berezinskii-Kosterlitz-Thouless correlations in the three-dimensional manganite <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Bi</mml:mi><mml:mphysical .<="" 102,="" 2020,="" b,="" review="" td=""><td>ro₩\$<mm< td=""><td>ıl:mn>0.5</td></mm<></td></mml:mphysical></mml:msub></mml:mrow></mml:math>	ro₩\$ <mm< td=""><td>ıl:mn>0.5</td></mm<>	ıl:mn>0.5
5	Magnetic Field Induced Berezinskii-Kosterlitz-Thouless Correlations in 3-Dimensional Manganites. MRS Advances, 2020, 5, 2251-2260.	0.9	1
6	Investigations on Magnetization and Electron Magnetic Resonance Properties of Nd0.65Ca0.35Mn1–xZnxO3(x = 0, 0.1, 0.3) Nanomanganite. Applied Magnetic Resonance, 2019, 50	, 1 3:5 9-136	58. ¹
7	Occurrence of Mixed Phase in $\$$ ext $\{Bi\}_{0.5}$ ext $\{Sr\}_{0.5}$ ext $\{Mn\}_{0.9}$ ext $\{Cr\}_{0.1}$ ext $\{O\}_{0.9}$ Bulk Sample: Electron Paramagnetic Resonance and Magnetization Studies. Applied Magnetic Resonance, 2019, 50, 1049-1058.	1.2	2
8	On exceeding the solubility limit of Cr+3 dopants in SnO2 nanoparticles based dilute magnetic semiconductors. Journal of Applied Physics, 2018, 123, 161518.	2.5	9
9	Zinc doping effects on the magnetic properties of Nd _{0.65Ca_{0.35Mn_{0.9Zn_{0.1O_{3 nanomanganite. International Journal of Nanotechnology, 2017, 14, 885.}}}}}	0.2	2
10	Study of coexisting phases in Bi doped La0.67Sr0.33MnO3. Journal of Magnetism and Magnetic Materials, 2016, 406, 22-29.	2.3	15
11	Temperature-Dependent Magnetic and EPR Studies of Bulk and Nanoparticles of Bi0.1Ca0.9MnO3. Applied Magnetic Resonance, 2015, 46, 921-929.	1.2	0
12	An EPR primer. Resonance, 2015, 20, 1012-1016.	0.3	0
13	Investigation on two magnon scattering processes in pulsed laser deposited epitaxial nickel zinc ferrite thin film. Journal Physics D: Applied Physics, 2015, 48, 125004.	2.8	18
14	Electron Magnetic Resonance Studies of Nanosized Nd0.65Ca0.35 Mn1â^'xCrxO3 (xÂ=Â0, 0.06, 0.1) Manganite. Applied Magnetic Resonance, 2015, 46, 1059-1068.	1.2	3
15	Effect of Size Reduction on Magnetic Ordering in Sm1 \hat{a} 'x Ca x MnO3 (x \hat{A} = \hat{A} 0.35, 0.65 and 0.92) Manganites: Magnetic and EMR Studies. Applied Magnetic Resonance, 2015, 46, 967-976.	1.2	1
16	Size Dependent Magnetic Properties of Nd0.7Ca0.3MnO3Nanomanganite. IOP Conference Series: Materials Science and Engineering, 2015, 73, 012007.	0.6	4
17	Graphene scavenges free radicals to synergistically enhance structural properties in a gamma-irradiated polyethylene composite through enhanced interfacial interactions. Physical Chemistry Chemical Physics, 2015, 17, 22900-22910.	2.8	49
18	Disappearance of electron-hole asymmetry in nanoparticles of Nd1â^xCaxMnO3(x=0.6,0.4): magnetization and electron paramagnetic resonance evidence. Journal of Applied Physics, 2015, 117, 17D514.	2.5	4

#	Article	IF	CITATIONS
19	Comparative study of magnetic ordering in bulk and nanoparticles of Sm0.65Ca0.35MnO3: Magnetization and electron magnetic resonance measurements. Journal of Applied Physics, 2015, 117, 17E111.	2.5	2
20	New insights of superoxide dismutase inhibition of pyrogallol autoxidation. Molecular and Cellular Biochemistry, 2015, 400, 277-285.	3.1	41
21	Effect of size reduction on magnetic ordering in Bi0.2Sr0.8MnO3. Journal of Applied Physics, 2014, 115, 17E130.	2.5	1
22	Role of Crystal Field in Mixed Alkali Metal Effect: Electron Paramagnetic Resonance Study of Mixed Alkali Metal Oxyfluoro Vanadate Glasses. Journal of Physical Chemistry A, 2014, 118, 573-578.	2.5	13
23	Role of silica nanoparticles in conductivity enhancement of nanocomposite solid polymer electrolytes: (PEGx NaBr): ySiO2. lonics, 2013, 19, 1375-1379.	2.4	19
24	Ferromagnetic Resonance Study on a Grid of Permalloy Nanowires. IEEE Transactions on Magnetics, 2013, 49, 3097-3100.	2.1	2
25	Investigating thermal stability of structural defects and its effect on d ferromagnetism in undoped SnO2. Journal of Applied Physics, 2013, 113 , .	2.5	82
26	Magnetization in electron- and Mn- doped SrTiO3. Scientific Reports, 2013, 3, 1433.	3.3	23
27	FMR Investigations on Magnetic Anisotropy in Epitaxial Fe Films Grown on GaAs(001) by Pulsed Laser Deposition. Journal of Superconductivity and Novel Magnetism, 2012, 25, 2799-2802.	1.8	2
28	Magnetocaloric effect and nature of magnetic transition in nanoscale Pr0.5Ca0.5MnO3. Journal of Applied Physics, 2012, 112, .	2.5	10
29	Charge order suppression, emergence of ferromagnetism and absence of exchange bias effect in Bi0.25Ca0.75MnO3 nanoparticles: Electron paramagnetic resonance and magnetization studies. Journal of Applied Physics, 2012, 111, .	2.5	8
30	ZnO/Ag nanohybrid: synthesis, characterization, synergistic antibacterial activity and its mechanism. RSC Advances, 2012, 2, 930-940.	3.6	169
31	Oscillatory exchange bias and training effects in nanocrystalline Pr0.5Ca0.5MnO3. AIP Advances, 2012, 2, .	1.3	12
32	Molecular Probe Dynamics Reveals Suppression of Ice-Like Regions in Strongly Confined Supercooled Water. PLoS ONE, 2012, 7, e44382.	2.5	16
33	Enhancement of uniaxial magnetic anisotropy in Fe thin films grown on GaAs(001) with an MgO underlayer. Journal of Applied Physics, 2011, 109, 07C114.	2.5	8
34	Tuning of dielectric properties and magnetism of SrTiO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:math> by site-specific doping of Mn. Physical Review B, 2011, 84, .	3.2	67
35	Electron paramagnetic resonance studies on Mn doped GaSb. Journal of Applied Physics, 2011, 109, .	2.5	1
36	Martensite-like transition and spin-glass behavior in nanocrystalline Pr0.5Ca0.5MnO3. AIP Advances, 2011, 1, .	1.3	16

3

#	Article	IF	Citations
37	Ba3(P1 â^' x Mn x O4)2 : Blue/green inorganic materials based on tetrahedral Mn(V). Bulletin of Materials Science, 2011, 34, 1257-1262.	1.7	28
38	Enhanced ionic conductivity in nano-composite solid polymer electrolyte: (PEG) \times LiBr: \times Li	2.4	19
39	Studies on a nanocomposite solid polymer electrolyte with hydrotalcite as a filler. Solid State Ionics, 2010, 181, 964-970.	2.7	40
40	Synthesis, Structure, and Magnetic Properties of Amineâ€Templated Transitionâ€Metal Phosphites. European Journal of Inorganic Chemistry, 2010, 2010, 1829-1838.	2.0	11
41	Contactless conductivity of nanoparticles from electron magnetic resonance lineshape analysis. Solid State Communications, 2010, 150, 1518-1520.	1.9	2
42	Coexistence of para and ferromagnetic phases of in undoped CdZnTe () crystals. Solid State Communications, 2010, 150, 2174-2177.	1.9	0
43	Probing the existing magnetic phases in Pr _{0.5} Ca _{0.5} MnO ₃ (PCMO) nanowires and nanoparticles: magnetization and magneto-transport investigations. Journal of Physics Condensed Matter, 2010, 22, 116004.	1.8	29
44	A new behaviour of ac losses in superconducting Bi ₂ Sr ₂ CaCu ₂ O ₈ single crystals. Journal of Physics Condensed Matter, 2009, 21, 045704.	1.8	0
45	Realizing the â€ ⁻ hindered charge ordered phase' in nanoscale charge ordered manganites: magnetization, magneto-transport and EPR investigations. Journal of Physics Condensed Matter, 2009, 21, 196005.	1.8	27
46	ESR evidence for 2 coexisting liquid phases in deeply supercooled bulk water. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11448-11453.	7.1	71
47	Spin-Probe ESR Studies on Nanocomposite Polymer Electrolytes. Applied Magnetic Resonance, 2009, 36, 149-156.	1.2	1
48	EPR Evidence for Premonitory Charge-Ordering Fluctuations in Hydrothermally Grown Pr0.57Ca0.41Ba0.02MnO3 Nanowires. Applied Magnetic Resonance, 2009, 36, 347-356.	1.2	2
49	The effect of composition, electron irradiation and quenching on ionic conductivity in a new solid polymer electrolyte: (PEG) x NH4I. Pramana - Journal of Physics, 2009, 72, 555-568.	1.8	14
50	Fluorite and Mixedâ€Metal Kagomeâ€Related Topologies in Metal–Organic Framework Compounds: Synthesis, Structure, and Properties. Chemistry - an Asian Journal, 2009, 4, 936-947.	3.3	14
51	Vitrification, relaxation and free volume in glycerol–water binary liquid mixture: Spin probe ESR studies. Journal of Non-Crystalline Solids, 2009, 355, 2433-2438.	3.1	17
52	Magnetization, magnetotransport and electron magnetic resonance studies of nanoparticles and nanowires of Pr _{0.5} Sr _{0.5} MnO ₃ . Journal Physics D: Applied Physics, 2009, 42, 075004.	2.8	41
53	Cr 3 + electron paramagnetic resonance study of Sn1â°'xCrxO2â€^(0.00â‰xâ‰0.10). Journal of Applied Physics, 2009, 105, .	2.5	23
54	Study of effect of composition, irradiation and quenching on ionic conductivity in (PEG) x : NH4NO3 solid polymer electrolyte. Bulletin of Materials Science, 2008, 31, 869-876.	1.7	8

#	Article	IF	Citations
55	EPR Evidence for Premonitory Charge-Ordering Fluctuations in Nanomanganite Pr0.57Ca0.41Ba0.02MnO3. Applied Magnetic Resonance, 2008, 33, 127-136.	1.2	8
56	Charge-Ordered Antiferromagnetic to Ferromagnetic Phase Transition in Cr-Doped Nd0.5Ca0.5Mn1 \hat{a} °x Cr x O3: EMR and Magnetization Study. Applied Magnetic Resonance, 2008, 33, 11-17.	1.2	3
57	Synthesis, Structure, and Magnetic Properties of a New Threeâ€Dimensional Iron Phosphite, [C ₄ N ₂ H ₁₂][Fe ₄ (H ₂ O) ₃ (HPO _{= 0.6. European Journal of Inorganic Chemistry, 2008, 2008, 1386-1391.}	. 3. ∂sub>)∢	∖ < Ֆ 44b>7 <u \$€
58	Spin probe ESR studies of dynamics of single walled carbon nanotubes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2008, 69, 1178-1182.	3.9	7
59	Dielectric properties, thermal decomposition and related aspects of BiAlO3. Solid State Communications, 2008, 146, 435-437.	1.9	28
60	Magnetic, electron magnetic resonance and optical studies of Pr0.7Pb0.3MnO3nanoparticles. Journal Physics D: Applied Physics, 2008, 41, 155011.	2.8	10
61	Electron paramagnetic resonance studies on multiferroic DyMnO3 and Dy0.5Sr0.5MnO3. Journal of Applied Physics, 2008, 104, .	2.5	18
62	Complete 'Melting' of Charge Order in Hydrothermally Grown Pr0.57Ca0.41Ba0.02MnO3 Nanowires. Journal of Nanoscience and Nanotechnology, 2007, 7, 1775-1778.	0.9	15
63	Preparation, Characterization, and Magnetic Studies of Bi0.5X0.5(X = Ca, Sr)MnO3 Nanoparticles. Journal of Nanoscience and Nanotechnology, 2007, 7, 2025-2028.	0.9	9
64	Surface-Enhanced Raman Spectra of Aza-aromatics on Nanocrystals of Metallic ReO3. Journal of Physical Chemistry C, 2007, 111, 5689-5693.	3.1	17
65	Synthesis and optical properties of In-doped GaN nanocrystals. Solid State Communications, 2007, 141, 325-328.	1.9	12
66	EPR studies on single crystals of. Physica B: Condensed Matter, 2007, 398, 107-111.	2.7	3
67	Studies on ac losses in Bi2Sr2CaCu2O8 single crystals. Physica C: Superconductivity and Its Applications, 2007, 460-462, 719-721.	1.2	O
68	A Study of Mn2+Doping in CdS Nanocrystals. Chemistry of Materials, 2007, 19, 3252-3259.	6.7	138
69	Suppression of charge order, disappearance of antiferromagnetism, and emergence of ferromagnetism inNd0.5Ca0.5MnO3nanoparticles. Physical Review B, 2006, 74, .	3.2	145
70	Equipartition of current in parallel conductors on cooling through the superconducting transition. Journal of Physics Condensed Matter, 2006, 18, L143-L147.	1.8	1
71	Optical spectroscopic studies of composites of conducting PANI with CdSe and ZnO nanocrystals. Chemical Physics Letters, 2006, 433, 154-158.	2.6	23
72	Anomalous spin dynamics in the charge-ordered two-electron doped manganiteCa0.9Ce0.1MnO3: Possibility of a spin-liquid phase. Physical Review B, 2006, 73, .	3.2	8

#	Article	IF	Citations
73	Effect of sintering temperature on electrical transport properties of La0.67Ca0.33MnO3. Physica B: Condensed Matter, 2005, 357, 370-379.	2.7	122
74	Tuning the bandgap of ZnO by substitution with Mn2+, Co2+ and Ni2+. Solid State Communications, 2005, 135, 345-347.	1.9	206
75	Apparatus for nonresonant rf power absorption studies in high Tc superconductors and CMR materials using rf oscillators. Review of Scientific Instruments, 2005, 76, 023905.	1.3	6
76	Weakening of charge order and antiferromagnetic to ferromagnetic switch over in Pr0.5Ca0.5MnO3 nanowires. Applied Physics Letters, 2005, 87, 182503.	3.3	115
77	Vitrification and Glass Transition of Water: Insights from Spin Probe ESR. Physical Review Letters, 2005, 95, 235702.	7.8	68
78	Electron spin resonance studies in the doped polyaniline PANI-AMPSA: Evidence for local ordering from linewidth features. Physical Review B, 2005, 72, .	3.2	21
79	Frequent Josephson junction decoupling is the main origin of ac losses in the superconducting state. Journal of Applied Physics, 2005, 98, 073906.	2.5	4
80	An electron paramagnetic resonance study of electron–hole asymmetry in charge ordered Pr1ÂxCaxMnO3(x= 0.64, 0.36). Journal of Physics Condensed Matter, 2004, 16, 2869-2878.	1.8	19
81	Spin probe ESR studies of PEGxLiClO4 polymer electrolyte systems. lonics, 2004, 10, 139-141.	2.4	6
82	Charge ordering and antiferromagnetic transitions in NdxCa1â^'xMnO3(x=0.2,0.3) manganites. Physica B: Condensed Matter, 2004, 349, 35-43.	2.7	5
83	Large enhancement of the ionic conductivity in an electron-beam-irradiated [poly(ethylene) Tj ETQq1 1 0.784314 42, 1299-1311.	rgBT /Ove	
84	Rapid screening for HIV-1 protease inhibitor leads through X-ray diffraction. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 594-596.	2.5	7
85	An electron paramagnetic resonance study of phase segregation in Nd0.5Sr0.5MnO3. Journal of Magnetism and Magnetic Materials, 2004, 279, 91-102.	2.3	17
86	On the analysis of broad Dysonian electron paramagnetic resonance spectra. Journal of Magnetic Resonance, 2004, 168, 284-287.	2.1	106
87	Increased lithium-ion conductivity in (PEG)46LiClO4 solid polymer electrolyte with Î'-Al2O3 nanoparticles. Journal of Power Sources, 2004, 129, 280-287.	7.8	61
88	Morphology and conductivity studies of a new solid polymer electrolyte: (PEG)xLiClO4. Bulletin of Materials Science, 2003, 26, 707-714.	1.7	81
89	Color center formation in sapphire by swift heavy ion irradiation. Radiation Measurements, 2003, 36, 723-727.	1.4	25
90	Dense electronic excitation induced defects in fused silica. Journal Physics D: Applied Physics, 2003, 36, 3151-3155.	2.8	31

#	Article	IF	Citations
91	Magnetic study of an amorphous conducting polyaniline. Applied Physics Letters, 2003, 82, 1733-1735.	3.3	18
92	Optical and Magnetic Properties of Manganese-Doped Zinc Sulfide Nanoclusters. Journal of Nanoscience and Nanotechnology, 2003, 3, 392-400.	0.9	39
93	Faraday: Father of electromagnetism. Resonance, 2002, 7, 46-50.	0.3	1
94	Non-resonant microwave absorption studies of superconducting MgB2 and MgB2 + MgO. Pramana - Journal of Physics, 2002, 58, 361-369.	1.8	2
95	Enhanced lithium-ion transport in PEG-based composite polymer electrolyte with Mn0.03Zn0.97Al2O4 nanoparticles. Solid State Ionics, 2002, 154-155, 21-27.	2.7	17
96	Electron paramagnetic resonance studies of the insulating ferromagnetic manganite Nd0.8Pb0.2MnO3 above the transition temperature. Solid State Communications, 2002, 123, 379-382.	1.9	6
97	EXPLORATORY NMR IMAGING EXPERIMENTS TO DETERMINE THE POSSIBILITY OF A PERCOLATING MECHANISM IN PLASTICIZED POLYMER ELECTROLYTES., 2002,,.		0
98	Temperature-dependent electron paramagnetic resonance studies of charge-orderedNd0.5Ca0.5MnO3. Physical Review B, 2001, 65, .	3.2	93
99	Stable ground states for Δϕ=π in double Josephson junction superconducting loops. Physica C: Superconductivity and Its Applications, 2000, 341-348, 1671-1672.	1.2	0
100	Non-resonant microwave absorption evidence for intrinsic Josephson coupling in Tl2Ba2CaCu2O8 single crystals. Physica C: Superconductivity and Its Applications, 2000, 341-348, 1229-1230.	1.2	1
101	ESR evidence for mirror symmetry conservation during radiation damage of X-irradiated single crystals of KClO4. Applied Magnetic Resonance, 2000, 19, 111-120.	1.2	1
102	An electron paramagnetic resonance study of Pr0.6Ca0.4MnO3across the charge-ordering transition. Journal of Physics Condensed Matter, 2000, 12, 6919-6926.	1.8	33
103	Influence of cobalt doping on superconducting transition in as-grown YBCO single crystals. Solid State Communications, 1999, 109, 333-338.	1.9	8
104	Electron spin resonance absorption in organic metal polyaniline and its blend with PMMA. Solid State Communications, 1999, 110, 503-508.	1.9	17
105	Effects of a plasticizer on protonic conductivity of polymer electrolyte (PEG)100NH4ClO4. Solid State lonics, 1999, 122, 291-299.	2.7	21
106	VTF to Arrhenius crossover in temperature dependence of conductivity in (PEG)xNH4ClO4 polymer electrolyte. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 1201-1209.	2.1	36
107	Electron spin resonance study on high energy heavy ion irradiated conducting carbon films. Solid State Communications, 1998, 105, 543-546.	1.9	8
108	Possible non-resonant r.f. absorption evidence for superconducting fluctuations above TC in Bi2Sr2CaCu2O8 single crystals. Solid State Communications, 1998, 107, 373-378.	1.9	2

#	Article	IF	CITATIONS
109	Vortex dynamics at rf frequencies in Bi2Sr2CaCu2O8 single crystals. Physica C: Superconductivity and Its Applications, 1998, 297, 253-261.	1.2	3
110	Suppressed rf dissipation in 107Ag17+ ion irradiated Bi2Sr2CaCu2O8 single crystals by enhanced flux line tilt modulus. Applied Physics Letters, 1998, 72, 2325-2327.	3.3	1
111	Competition between Josephson and electromagnetic interactions in single crystals. Superconductor Science and Technology, 1998, 11, 1372-1380.	3. 5	0
112	Oxygen displacement in a 107Ag17+ ion irradiated Bi2Sr2CaCu2O8 single crystal. Applied Physics Letters, 1997, 71, 1576-1578.	3.3	4
113	An electron spin-resonance study of radicals in single crystals. Journal of Physics Condensed Matter, 1997, 9, 3219-3226.	1.8	6
114	Non-resonant rf absorption evidence for reentrant melting of vortex lattice in Bi2Sr2CaCu2O8 single crystals. Physica C: Superconductivity and Its Applications, 1997, 282-287, 1975-1976.	1.2	2
115	Superconducting YBa2Cu3O7- $\hat{\Gamma}$ thick films on Ba2RETaO6 (RE = Pr5 Nd, Eu, and Dy) substrates. Journal of Superconductivity and Novel Magnetism, 1997, 10, 193-197.	0.5	5
116	Effects of granularity on magnetic field dependent microwave response and surface degradation in thin films of YBa2Cu3O7â°Î. Solid State Communications, 1996, 98, 77-81.	1.9	3
117	"Phase reversal―of non-resonant microwave absorption in superconducting powder mixtures. Solid State Communications, 1996, 99, 665-668.	1.9	1
118	Ionic transport in (PEG)xLiBr systems. Solid State Ionics, 1996, 85, 187-192.	2.7	1
119	1H MAS NMR study of protonic conduction in layered HNbWO6 · xH2O (x = 1.5, 0.5). Solid State Ionics, 1996, 86-88, 609-611.	2.7	1
120	Mechanism of protonic conduction in defect pyrochlore HNbWO6·xH2O using MAS NMR. Solid State lonics, 1996, 86-88, 665-668.	2.7	5
121	Concentration-dependent NMR and conductivity studies of (PEG)xNH4ClO4. Solid State Ionics, 1996, 92, 261-264.	2.7	16
122	Nonresonant microwave absorption study of intrinsic Josephson coupling inBi2Sr2CaCu2O8single crystals. Physical Review B, 1996, 53, 9366-9370.	3.2	17
123	(PEG) x NH4ClO4: a new polymeric fast proton conductor. Bulletin of Materials Science, 1995, 18, 917-920.	1.7	1
124	Nonresonant microwave absorption studies of surface passivation of superconducting YBa2Cu3O7â^î^thin films. Applied Physics Letters, 1995, 66, 1995-1997.	3.3	16
125	Irreversibility line and the hierarchy of weak links inBi2Sr2CaCu2O8+Δ. Physical Review B, 1995, 51, 8521-8528.	3.2	16
126	Low temperature 1H NMR relaxation studies of phase transitions in dicalcium barium propionate. Phase Transitions, 1995, 54, 227-233.	1.3	0

#	Article	IF	Citations
127	Paramagnetic Meissner effect in YBa ₂ : A non-resonant microwave absorption study. World Scientific Series in 20th Century Chemistry, 1995, , 607-612.	0.0	0
128	Chemical shift spectroscopy of protonic conduction in layered and defect pyrochlore HNbWO6·xH2O. Chemical Physics Letters, 1994, 231, 487-490.	2.6	3
129	Paramagnetic Meissner effect in YBa2Cu3O7â~δ. Physica C: Superconductivity and Its Applications, 1994, 219, 87-92.	1.2	21
130	Surface barrier effects in non-resonant microwave absorption by thin superconducting films of YBa2Cu3O7â^î. Physica C: Superconductivity and Its Applications, 1994, 234, 229-231.	1.2	6
131	Surface barrier effects in non-resonant microwave absorption by superconducting thin films of YBa2Cu3O7â^î. Physica C: Superconductivity and Its Applications, 1994, 235-240, 2056-2057.	1.2	1
132	Role of magnetic field modulation in causing the fine structure of non-resonant microwave/rf absorption in HTSC. Physica C: Superconductivity and Its Applications, 1994, 235-240, 2058-2059.	1.2	0
133	Frequency modulated non-resonant r.f. and microwave absorption in high-Tc superconductors. Solid State Communications, 1994, 89, 633-635.	1.9	5
134	Anomalous d.c. field dependence of non-resonant r.f. absorption at high r.f. fields in YBa2Cu3O7 \hat{a} \hat{l} powders. Solid State Communications, 1994, 89, 375-378.	1.9	9
135	An electron spin resonance study of Mn2+ doped calcium hydrazine carboxylate monohydrate. Bulletin of Materials Science, 1994, 17, 1131-1141.	1.7	2
136	Non-resonant RF and microwave response: A novel technique for the characterization of superconducting materials. Bulletin of Materials Science, 1994, 17, 1271-1285.	1.7	0
137	Line shapes of fieldâ€dependent nonresonant microwave and rf absorption in highâ€√csuperconductors. Journal of Applied Physics, 1994, 75, 4131-4136.	2.5	23
138	Investigation of the (PEG)xLiCl system using conductivity, DSC and NMR techniques. Solid State Ionics, 1993, 67, 97-105.	2.7	21
139	Molecular ferromagnetism in C60·TDAE. Solid State Communications, 1993, 85, 971-974.	1.9	46
140	Critical current densities of high pressure oxygen sputtered thin films of YBa2Cu3O7â^'x by non-resonant rf absorption method. Pramana - Journal of Physics, 1993, 40, 119-122.	1.8	4
141	Critical-current variation with Pr content inY1â°'xPrxBa2Cu3O7epitaxial films. Physical Review B, 1993, 48, 6465-6469.	3.2	7
142	Electron paramagnetic resonance study of porous silicon. Applied Physics Letters, 1992, 60, 2116-2117.	3.3	25
143	NMR study of fast protonic conduction in layered HLa2NbTi2O10·1.5H2O. Solid State Ionics, 1992, 58, 303-309.	2.7	19
144	Growth and extraction of flux free YBCO crystals. Journal of Crystal Growth, 1992, 121, 531-535.	1.5	8

#	Article	IF	CITATIONS
145	Critical current density measurements of YBa2Cu3O7â^'x thin films by non-resonant r.f. absorption method. Solid State Communications, 1991, 79, 713-716.	1.9	9
146	Protonic conductivity of (NH4) 4Fe(CN)6 \hat{A} ·1.5H2O by complex admittance method. Solid State Ionics, 1991, 48, 271-275.	2.7	3
147	Temperature-dependent phase reversal of nonresonant microwave and rf absorption in high-Tcsuperconductors. Physical Review B, 1991, 44, 10121-10125.	3.2	33
148	123, 247, and 124 cuprate superconductors: Investigations of thermodynamic stabilities, defect structures, and intergrowths. Journal of Solid State Chemistry, 1990, 88, 163-176.	2.9	17
149	Nature and stability of the â€~â€~60-K superconducting phase'' in theYBa2Cu3O7â^'δsystem. Physical Revi 1990, 42, 6765-6768.	iew B,	28
150	High-pressure NMR investigations of the protonic conductor (NH4)4Fe(CN)6.1.5H2O. Journal of Physics Condensed Matter, 1989, 1, 1495-1502.	1.8	1
151	Certain novel features of the R.F. response of the YBa 2 Cu 3 O 7â°'x superconductors. Physica C: Superconductivity and Its Applications, 1989, 162-164, 1571-1572.	1.2	0
152	NMR studies of the protonic conductor (NH4)4Fe(CN)6·1.5H2O. Solid State Ionics, 1989, 35, 123-125.	2.7	3
153	Bi $2\hat{a}$ 'xPbx(Ca, Sr)n+1CunO2n+4+ \hat{l} ' (n = 1, 2, 3, and 4) family of superconductors. Journal of Solid State Chemistry, 1989, 79, 177-180.	2.9	18
154	Evaluation of diffusion coefficient and ionic mobility in (NH4)4Fe(CN)6 \hat{A} ·1.5 H2O. Solid State Ionics, 1988, 28-30, 647-650.	2.7	3
155	High pressure NMR and compressibility evidence for a phase transition in the protonic conductor (NH4)4Fe(CN)6·1.5H2O. Solid State Ionics, 1988, 28-30, 664-667.	2.7	2
156	Preparation, structure, microwave absorption and other properties of the 125K superconductor Tl2Ca2Ba2Cu3O10+ \hat{l} . Solid State Communications, 1988, 67, 39-42.	1.9	21
157	Superconductivity in the 100–120 K region in oxides of the Tl-Ca-Ba-Cu-O system. Pramana - Journal of Physics, 1988, 30, L483-L490.	1.8	2
158	A pulsed field gradient spin echo NMR spectrometer for diffusion coefficient measurements. Pramana - Journal of Physics, 1988, 31, 51-57.	1.8	3
159	EPR study of LiKSO4in phase IV below -138 degrees C. Journal of Physics C: Solid State Physics, 1988, 21, 597-605.	1.5	10
160	Electron paramagnetic resonance evidence for Jahn-Teller glasses. Molecular Physics, 1988, 65, 181-191.	1.7	5
161	1H NMR study of [N(CH3)4]2ZnCl4at high pressures and low temperatures. Phase Transitions, 1987, 9, 259-268.	1.3	6
162	Absorption of electromagnetic radiation by superconducting YBa2Cu3O7: an oxygen-induced phenomenon. Journal of Physics C: Solid State Physics, 1987, 20, L559-L563.	1.5	134

#	Article	IF	CITATIONS
163	A microprocessor-controlled programmable pulse generator. Journal of Physics E: Scientific Instruments, 1987, 20, 100-101.	0.7	2
164	EPR Study of Mn ²⁺ Doped Dicalcium Barium Propionate Single Crystals under Hydrostatic Pressure. Physica Status Solidi (B): Basic Research, 1987, 141, K133.	1.5	4
165	7Li Spin-flip satellites in the EPR sectra of NH3+ -doped LiKSO4. Chemical Physics Letters, 1987, 133, 455-457.	2.6	5
166	A "high resolution―NMR study of ionic transport in the hydrate of ammonium ferrocyanide. Solid State Ionics, 1987, 23, 267-270.	2.7	7
167	An "EPR―study of YBa2Cu3O7 and related high-temperature superconductors. Pramana - Journal of Physics, 1987, 28, L425-L427.	1.8	43
168	EPR investigations of phase transitions in lithium potassium sulfate: LiKSO4. Journal of Physics and Chemistry of Solids, 1986, 47, 927-931.	4.0	10
169	NMR and X-ray Investigations of a Plastic Crystalline Phase in MBBA. Molecular Crystals and Liquid Crystals, 1985, 126, 161-173.	0.8	10
170		3.0	155
171	ESR of the highâ€spin (S= 25/2) Mn5molecule. Journal of Chemical Physics, 1982, 76, 5636-5637.	3.0	34
172	ESR studies of phase transitions in double propionates. Ferroelectrics, 1982, 40, 49-52.	0.6	9
173	Esr study of (SO4)2â^ dynamics in relation to the ferroelectric phase transition in ammonium sulfate. Journal of Physics and Chemistry of Solids, 1982, 43, 1157-1164.	4.0	13
174	ESR studies of phase transitions in double propionates. Ferroelectrics, 1981, 39, 1167-1167.	0.6	3
175	ESR Studies of Phase Transitions in Double Propionates: Dicalcium Barium Propionate Ca2Ba(C2H5COO)6. Journal of the Physical Society of Japan, 1981, 50, 2312-2316.	1.6	12
176	ESR of matrix isolated bromine atoms produced in the H+Br2reaction. Journal of Chemical Physics, 1980, 73, 1498-1502.	3.0	10
177	Rb87nuclear-magnetic-resonance study of the cubic to tetragonal phase transition in RbCaF3. Physical Review B, 1979, 20, 1812-1816.	3.2	13
178	Nuclear magnetic resonance studies of the structural phase transitions in RbCaF3. Solid State Communications, 1979, 30, 129-131.	1.9	6
179	Lithium nuclear-magnetic-resonance in lithium acetate dihydrate, Li(CH3COO).2H2O. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1974, 30, 846-848.	0.4	6
180	Lithium nuclear magnetic resonance in lithium formate monohydrate. Physica Status Solidi A, 1972, 11, K109-K112.	1.7	10