List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/882273/publications.pdf Version: 2024-02-01

		10389	20358
307	17,187	72	116
papers	citations	h-index	g-index
318	318	318	10339
all docs	docs citations	times ranked	citing authors

RUDOLE KOSKA

#	Article	IF	CITATIONS
1	Two years study of <i>Aspergillus</i> metabolites prevalence in maize from the Republic of Serbia. Journal of Food Processing and Preservation, 2022, 46, e15897.	2.0	5
2	Mycotoxin-mixture assessment in mother-infant pairs in Nigeria: From mothers' meal to infants' urine. Chemosphere, 2022, 287, 132226.	8.2	22
3	Mycotoxin exposure biomonitoring in breastfed and non-exclusively breastfed Nigerian children. Environment International, 2022, 158, 106996.	10.0	24
4	An Automatic Immunoaffinity Pretreatment of Deoxynivalenol Coupled with UPLC-UV Analysis. Toxins, 2022, 14, 93.	3.4	4
5	The application of antagonistic yeasts and bacteria: An assessment of in vivo and under field conditions pattern of Fusarium mycotoxins in winter wheat grain. Food Control, 2022, 138, 109039.	5.5	5
6	Interacting Environmental Stress Factors Affect Metabolomics Profiles in Stored Naturally Contaminated Maize. Microorganisms, 2022, 10, 853.	3.6	2
7	Effective approaches for early identification and proactive mitigation of aflatoxins in peanuts: An EU–China perspective. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 3227-3243.	11.7	5
8	An Interlaboratory Comparison Study of Regulated and Emerging Mycotoxins Using Liquid Chromatography Mass Spectrometry: Challenges and Future Directions of Routine Multi-Mycotoxin Analysis including Emerging Mycotoxins. Toxins, 2022, 14, 405.	3.4	3
9	The Role of Nitrogen Fertilization on the Occurrence of Regulated, Modified and Emerging Mycotoxins and Fungal Metabolites in Maize Kernels. Toxins, 2022, 14, 448.	3.4	1
10	Fusarium langsethiae and mycotoxin contamination in oat grain differed with growth stage at inoculation. European Journal of Plant Pathology, 2022, 164, 59-78.	1.7	0
11	Fungal Species and Multi-Mycotoxin Associated with Post-Harvest Sorghum (Sorghum bicolor (L.)) Tj ETQq1 1	0.784314 r 3.4	gBT /Overloc 12
12	Cocktails of Mycotoxins, Phytoestrogens, and Other Secondary Metabolites in Diets of Dairy Cows in Austria: Inferences from Diet Composition and Geo-Climatic Factors. Toxins, 2022, 14, 493.	3.4	8
13	Fate of regulated, masked, emerging mycotoxins and secondary fungal metabolites during different large-scale maize dry-milling processes. Food Research International, 2021, 140, 109861.	6.2	17
14	Fungi and their secondary metabolites in waterâ€damaged indoors after a major flood event in eastern Croatia. Indoor Air, 2021, 31, 730-744.	4.3	15
15	Co-occurrence of mycotoxins, aflatoxin biosynthetic precursors, and <i>Aspergillus</i> metabolites in garlic (<i>Allium sativum</i> L) marketed in Zaria, Nigeria. Food Additives and Contaminants: Part B Surveillance, 2021, 14, 23-29.	2.8	3
16	Challenges and future directions in LC-MS-based multiclass method development for the quantification of food contaminants. Analytical and Bioanalytical Chemistry, 2021, 413, 25-34.	3.7	36
17	Fungi and their metabolites in grain from individual households in Croatia. Food Additives and Contaminants: Part B Surveillance, 2021, 14, 98-109.	2.8	15
18	Analytik vor den Vorhang. Nachrichten Aus Der Chemie, 2021, 69, 3-3.	0.0	1

#	Article	IF	CITATIONS
19	Fullerol C60(OH)24 Nanoparticles and Drought Impact on Wheat (Triticum aestivum L.) during Growth and Infection with Aspergillus flavus. Journal of Fungi (Basel, Switzerland), 2021, 7, 236.	3.5	10
20	Fusarium Head Blight and Associated Mycotoxins in Grains and Straw of Barley: Influence of Agricultural Practices. Agronomy, 2021, 11, 801.	3.0	8
21	Co-occurrence and toxicological relevance of secondary metabolites in dairy cow feed from Thailand. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2021, 38, 1013-1027.	2.3	14
22	Metataxonomic analysis of bacterial communities and mycotoxin reduction during processing of three millet varieties into ogi, a fermented cereal beverage. Food Research International, 2021, 143, 110241.	6.2	12
23	Raised concerns about the safety of barley grains and straw: A Swiss survey reveals a high diversity of mycotoxins and other fungal metabolites. Food Control, 2021, 125, 107919.	5.5	33
24	<i>Fusarium</i> metabolites in maize from regions of Northern Serbia in 2016-2017. Food Additives and Contaminants: Part B Surveillance, 2021, 14, 295-305.	2.8	8
25	Present status and future perspectives of grain drying and storage practices as a means to reduce mycotoxin exposure in Nigeria. Food Control, 2021, 126, 108074.	5.5	13
26	Dietary Risk Assessment and Consumer Awareness of Mycotoxins among Household Consumers of Cereals, Nuts and Legumes in North-Central Nigeria. Toxins, 2021, 13, 635.	3.4	24
27	Evaluating the Performance of Lateral Flow Devices for Total Aflatoxins with Special Emphasis on Their Robustness under Sub-Saharan Conditions. Toxins, 2021, 13, 742.	3.4	6
28	Fusarium Secondary Metabolite Content in Naturally Produced and Artificially Provoked FHB Pressure in Winter Wheat. Agronomy, 2021, 11, 2239.	3.0	8
29	Towards a dietary-exposome assessment of chemicals in food: An update on the chronic health risks for the European consumer. Critical Reviews in Food Science and Nutrition, 2020, 60, 1890-1911.	10.3	43
30	Novel analytical methods to study the fate of mycotoxins during thermal food processing. Analytical and Bioanalytical Chemistry, 2020, 412, 9-16.	3.7	41
31	Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited â€ [~] FAO estimate' of 25%. Critical Reviews in Food Science and Nutrition, 2020, 60, 2773-2789.	10.3	656
32	Carbon dioxide production as an indicator of Aspergillus flavus colonisation and aflatoxins/cyclopiazonic acid contamination in shelled peanuts stored under different interacting abiotic factors. Fungal Biology, 2020, 124, 1-7.	2.5	13
33	Mycotoxins in maize harvested in Republic of Serbia in the period 2012–2015. Part 1: Regulated mycotoxins and its derivatives. Food Chemistry, 2020, 312, 126034.	8.2	61
34	Fungi and mycotoxins in cowpea (<i>Vigna unguiculata</i> L) on Nigerian markets. Food Additives and Contaminants: Part B Surveillance, 2020, 13, 52-58.	2.8	12
35	Moulds and their secondary metabolites associated with the fermentation and storage of two cocoa bean hybrids in Nigeria. International Journal of Food Microbiology, 2020, 316, 108490.	4.7	21
36	Profiles of fungal metabolites including regulated mycotoxins in individual dried Turkish figs by LC-MS/MS. Mycotoxin Research, 2020, 36, 381-387.	2.3	11

#	Article	IF	CITATIONS
37	Distribution of fungi and their toxic metabolites in melon and sesame seeds marketed in two major producing states in Nigeria. Mycotoxin Research, 2020, 36, 361-369.	2.3	10
38	The MyToolbox EU–China Partnership—Progress and Future Directions in Mycotoxin Research and Management. Toxins, 2020, 12, 712.	3.4	7
39	DNA aptamers against bacterial cells can be efficiently selected by a SELEX process using state-of-the art qPCR and ultra-deep sequencing. Scientific Reports, 2020, 10, 20917.	3.3	30
40	Human dietary exposure to chemicals in sub-Saharan Africa: safety assessment through a total diet study. Lancet Planetary Health, The, 2020, 4, e292-e300.	11.4	15
41	Validation of an LC-MS/MS-based dilute-and-shoot approach for the quantification of > 500 mycotoxins and other secondary metabolites in food crops: challenges and solutions. Analytical and Bioanalytical Chemistry, 2020, 412, 2607-2620.	3.7	160
42	Biological Control of Aflatoxin in Maize Grown in Serbia. Toxins, 2020, 12, 162.	3.4	43
43	Fungal and plant metabolites in industrially-processed fruit juices in Nigeria. Food Additives and Contaminants: Part B Surveillance, 2020, 13, 155-161.	2.8	4
44	Evaluation of Matrix Effects and Extraction Efficiencies of LC–MS/MS Methods as the Essential Part for Proper Validation of Multiclass Contaminants in Complex Feed. Journal of Agricultural and Food Chemistry, 2020, 68, 3868-3880.	5.2	86
45	DNA barcoding for the identification of mold species in bakery plants and products. Food Chemistry, 2020, 318, 126501.	8.2	5
46	Mycotoxins in maize harvested in Serbia in the period 2012–2015. Part 2: Non-regulated mycotoxins and other fungal metabolites. Food Chemistry, 2020, 317, 126409.	8.2	35
47	Do Triticum aestivum L. and Triticum spelta L. Hybrids Constitute a Promising Source Material for Quality Breeding ofNew Wheat Varieties?. Agronomy, 2020, 10, 43.	3.0	16
48	Impact of fullerol C60(OH)24 nanoparticles on the production of emerging toxins by Aspergillus flavus. Scientific Reports, 2020, 10, 725.	3.3	17
49	Gallium arsenide waveguides as a platform for direct mid-infrared vibrational spectroscopy. Analytical and Bioanalytical Chemistry, 2020, 412, 3447-3456.	3.7	2
50	Multiple Fungal Metabolites Including Mycotoxins in Naturally Infected and Fusarium-Inoculated Wheat Samples. Microorganisms, 2020, 8, 578.	3.6	38
51	Fungal Diversity and Mycotoxins in Low Moisture Content Ready-To-Eat Foods in Nigeria. Frontiers in Microbiology, 2020, 11, 615.	3.5	22
52	Fullerol C60(OH)24 Nanoparticles Affect Secondary Metabolite Profile of Important Foodborne Mycotoxigenic Fungi In Vitro. Toxins, 2020, 12, 213.	3.4	13
53	Realizing the simultaneous liquid chromatography-tandem mass spectrometry based quantification of >1200 biotoxins, pesticides and veterinary drugs in complex feed. Journal of Chromatography A, 2020, 1629, 461502.	3.7	35
54	Microbiological safety of readyâ€ŧoâ€eat foods in low―and middleâ€income countries: A comprehensive 10â€year (2009 to 2018) review. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 703-732.	11.7	47

#	Article	IF	CITATIONS
55	Diversity and toxigenicity of fungi and description of Fusarium madaense sp. nov. from cereals, legumes and soils in north-central Nigeria. MycoKeys, 2020, 67, 95-124.	1.9	20
56	Emerging Fusarium Mycotoxins Fusaproliferin, Beauvericin, Enniatins, and Moniliformin in Serbian Maize. Toxins, 2019, 11, 357.	3.4	50
57	Multimycotoxin LC-MS/MS analysis in pearl millet (Pennisetum glaucum) from Tunisia. Food Control, 2019, 106, 106738.	5.5	18
58	Stable Isotope-Assisted Plant Metabolomics: Investigation of Phenylalanine-Related Metabolic Response in Wheat Upon Treatment With the Fusarium Virulence Factor Deoxynivalenol. Frontiers in Plant Science, 2019, 10, 1137.	3.6	35
59	The Influence of Steeping Water Change during Malting on the Multi-Toxin Content in Malt. Foods, 2019, 8, 478.	4.3	3
60	Stable Isotope–Assisted Plant Metabolomics: Combination of Global and Tracer-Based Labeling for Enhanced Untargeted Profiling and Compound Annotation. Frontiers in Plant Science, 2019, 10, 1366.	3.6	23
61	Zearalenone and ß-Zearalenol But Not Their Glucosides Inhibit Heat Shock Protein 90 ATPase Activity. Frontiers in Pharmacology, 2019, 10, 1160.	3.5	5
62	Fungal metabolite and mycotoxins profile of cashew nut from selected locations in two African countries. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2019, 36, 1847-1859.	2.3	16
63	Simple lysis of bacterial cells for DNA-based diagnostics using hydrophilic ionic liquids. Scientific Reports, 2019, 9, 13994.	3.3	31
64	Regional Sub-Saharan Africa Total Diet Study in Benin, Cameroon, Mali and Nigeria Reveals the Presence of 164 Mycotoxins and Other Secondary Metabolites in Foods. Toxins, 2019, 11, 54.	3.4	42
65	Occurrence and Human-Health Impacts of Mycotoxins in Somalia. Journal of Agricultural and Food Chemistry, 2019, 67, 2052-2060.	5.2	47
66	Detection of a microbial source tracking marker by isothermal helicase-dependent amplification and a nucleic acid lateral-flow strip test. Scientific Reports, 2019, 9, 393.	3.3	27
67	Mycotoxin and cyanogenic glycoside assessment of the traditional leafy vegetables <i>mutete</i> and <i>omboga</i> from Namibia. Food Additives and Contaminants: Part B Surveillance, 2019, 12, 245-251.	2.8	8
68	The Influence of Processing Parameters on the Mitigation of Deoxynivalenol during Industrial Baking. Toxins, 2019, 11, 317.	3.4	23
69	Variation of Fungal Metabolites in Sorghum Malts Used to Prepare Namibian Traditional Fermented Beverages Omalodu and Otombo. Toxins, 2019, 11, 165.	3.4	16
70	A comparative investigation of the effects of feed-borne deoxynivalenol (DON) on growth performance, nutrient utilization and metabolism of detoxification in rainbow trout (Oncorhynchus) Tj ETQq0	0 0 rgBT /0	verlock 10 Tf
	carbohydrates. Aquaculture, 2019, 505, 306-318.		-
71	Mycotoxins in uncooked and plate-ready household food from rural northern Nigeria. Food and Chemical Toxicology, 2019, 128, 171-179.	3.6	31
72	The effects of naturally occurring or purified deoxynivalenol (DON) on growth performance, nutrient utilization and histopathology of rainbow trout (Oncorhynchus mykiss). Aquaculture, 2019, 505, 319-332.	3.5	10

#	Article	IF	CITATIONS
73	Screening of Various Metabolites in Six Barley Varieties Grown under Natural Climatic Conditions (2016–2018). Microorganisms, 2019, 7, 532.	3.6	9
74	Mycotoxin co-exposures in infants and young children consuming household- and industrially-processed complementary foods in Nigeria and risk management advice. Food Control, 2019, 98, 312-322.	5.5	53
75	Triticum polonicum L. as potential source material for the biofortification of wheat with essential micronutrients. Plant Genetic Resources: Characterisation and Utilisation, 2019, 17, 213-220.	0.8	13
76	Challenges and perspectives in the application of isothermal DNA amplification methods for food and water analysis. Analytical and Bioanalytical Chemistry, 2019, 411, 1695-1702.	3.7	45
77	Untargeted LC–MS based 13C labelling provides a full mass balance of deoxynivalenol and its degradation products formed during baking of crackers, biscuits and bread. Food Chemistry, 2019, 279, 303-311.	8.2	23
78	Mycotoxins in poultry feed and feed ingredients in Nigeria. Mycotoxin Research, 2019, 35, 149-155.	2.3	49
79	Ultra-sensitive, stable isotope assisted quantification of multiple urinary mycotoxin exposure biomarkers. Analytica Chimica Acta, 2018, 1019, 84-92.	5.4	101
80	From malt to wheat beer: A comprehensive multi-toxin screening, transfer assessment and its influence on basic fermentation parameters. Food Chemistry, 2018, 254, 115-121.	8.2	51
81	Occurrence of Ochratoxins, Fumonisin B ₂ , Aflatoxins (B ₁ and) Tj ETQq1 1 0.784314 r Mini‣urvey. Journal of Food Science, 2018, 83, 559-564.	gBT /Over 3.1	lock 10 Tf 50 37
82	Advanced LC–MS-based methods to study the co-occurrence and metabolization of multiple mycotoxins in cereals and cereal-based food. Analytical and Bioanalytical Chemistry, 2018, 410, 801-825.	3.7	113
83	Traditionally Processed Beverages in Africa: A Review of the Mycotoxin Occurrence Patterns and Exposure Assessment. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 334-351.	11.7	43
84	Impact of the insecticide application to maize cultivated in different environmental conditions on emerging mycotoxins. Field Crops Research, 2018, 217, 188-198.	5.1	9
85	The contribution of lot-to-lot variation to the measurement uncertainty of an LC-MS-based multi-mycotoxin assay. Analytical and Bioanalytical Chemistry, 2018, 410, 4409-4418.	3.7	28
86	Traditional processing impacts mycotoxin levels and nutritional value of ogi – A maize-based complementary food. Food Control, 2018, 86, 224-233.	5.5	36
87	Aspergillus flavus NRRL 3251 Growth, Oxidative Status, and Aflatoxins Production Ability In Vitro under Different Illumination Regimes. Toxins, 2018, 10, 528.	3.4	11
88	Fullerol C60(OH)24 nanoparticles modulate aflatoxin B1 biosynthesis in Aspergillus flavus. Scientific Reports, 2018, 8, 12855.	3.3	25
89	Assessing the combined toxicity of the natural toxins, aflatoxin B1, fumonisin B1 and microcystin-LR by high content analysis. Food and Chemical Toxicology, 2018, 121, 527-540.	3.6	20
90	Fusarium culmorum multi-toxin screening in malting and brewing by-products. LWT - Food Science and Technology, 2018, 98, 642-645.	5.2	12

#	Article	IF	CITATIONS
91	Über den europäschen Tellerrand. Nachrichten Aus Der Chemie, 2018, 66, 839-839.	0.0	0
92	The Mycotox Charter: Increasing Awareness of, and Concerted Action for, Minimizing Mycotoxin Exposure Worldwide. Toxins, 2018, 10, 149.	3.4	57
93	Survey of roasted street-vended nuts in Sierra Leone for toxic metabolites of fungal origin. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2018, 35, 1573-1580.	2.3	9
94	Interacting Environmental Stress Factors Affects Targeted Metabolomic Profiles in Stored Natural Wheat and That Inoculated with F. graminearum. Toxins, 2018, 10, 56.	3.4	25
95	Assessing the mycotoxicological risk from consumption of complementary foods by infants and young children in Nigeria. Food and Chemical Toxicology, 2018, 121, 37-50.	3.6	72
96	High-Throughput Sequence Analyses of Bacterial Communities and Multi-Mycotoxin Profiling During Processing of Different Formulations of Kunu, a Traditional Fermented Beverage. Frontiers in Microbiology, 2018, 9, 3282.	3.5	45
97	Effect of pretreatments on mycotoxin profiles and levels in dried figs. Arhiv Za Higijenu Rada I Toksikologiju, 2018, 69, 328-333.	0.7	10
98	Portable Infrared Laser Spectroscopy for On-site Mycotoxin Analysis. Scientific Reports, 2017, 7, 44028.	3.3	32
99	Occurrence of multiple mycotoxins and other fungal metabolites in animal feed and maize samples from Egypt using LCâ€MS/MS. Journal of the Science of Food and Agriculture, 2017, 97, 4419-4428.	3.5	94
100	Effect of agronomic programmes with different susceptibility to deoxynivalenol risk on emerging contamination in winter wheat. European Journal of Agronomy, 2017, 85, 12-24.	4.1	25
101	A mini-survey of moulds and mycotoxins in locally grown and imported wheat grains in Nigeria. Mycotoxin Research, 2017, 33, 59-64.	2.3	20
102	A loop-mediated isothermal amplification (LAMP) assay for the rapid detection of Enterococcus spp. in water. Water Research, 2017, 122, 62-69.	11.3	60
103	Uncommon toxic microbial metabolite patterns in traditionally home-processed maize dish (fufu) consumed in rural Cameroon. Food and Chemical Toxicology, 2017, 107, 10-19.	3.6	38
104	A Complementary Isothermal Amplification Method to the U.S. EPA Quantitative Polymerase Chain Reaction Approach for the Detection of Enterococci in Environmental Waters. Environmental Science & Technology, 2017, 51, 7028-7035.	10.0	12
105	Mycotoxin risk assessment for consumers of groundnut in domestic markets in Nigeria. International Journal of Food Microbiology, 2017, 251, 24-32.	4.7	78
106	Bacterial species and mycotoxin contamination associated with locust bean, melon and their fermented products in south-western Nigeria. International Journal of Food Microbiology, 2017, 258, 73-80.	4.7	23
107	MetExtract II: A Software Suite for Stable Isotope-Assisted Untargeted Metabolomics. Analytical Chemistry, 2017, 89, 9518-9526.	6.5	80
108	Mycotoxin patterns in ear rot infected maize: A comprehensive case study in Nigeria. Food Control, 2017, 73, 1159-1168.	5.5	40

#	Article	IF	CITATIONS
109	Natural mycotoxin contamination of maize (Zea mays L.) in the South region of Brazil. Food Control, 2017, 73, 127-132.	5.5	96
110	Mycotoxin testing: From Multi-toxin analysis to metabolomics. Mycotoxins, 2017, 67, 11-16.	0.2	13
111	Mycotoxin Contamination in Sugarcane Grass and Juice: First Report on Detection of Multiple Mycotoxins and Exposure Assessment for Aflatoxins B1 and G1 in Humans. Toxins, 2016, 8, 343.	3.4	37
112	Identification and Characterization of Carboxylesterases from Brachypodium distachyon Deacetylating Trichothecene Mycotoxins. Toxins, 2016, 8, 6.	3.4	17
113	The Response of Selected Triticum spp. Genotypes with Different Ploidy Levels to Head Blight Caused by Fusarium culmorum (W.G.Smith) Sacc Toxins, 2016, 8, 112.	3.4	9
114	Co-Occurrence of Regulated, Masked and Emerging Mycotoxins and Secondary Metabolites in Finished Feed and Maize—An Extensive Survey. Toxins, 2016, 8, 363.	3.4	151
115	Stable Isotope-Assisted Evaluation of Different Extraction Solvents for Untargeted Metabolomics of Plants. International Journal of Molecular Sciences, 2016, 17, 1017.	4.1	64
116	Identification of a novel human deoxynivalenol metabolite enhancing proliferation of intestinal and urinary bladder cells. Scientific Reports, 2016, 6, 33854.	3.3	40
117	Development and validation of a fully automated online-SPE–ESI–LC–MS/MS multi-residue method for the determination of different classes of pesticides in drinking, ground and surface water. International Journal of Environmental Analytical Chemistry, 2016, 96, 353-372.	3.3	12
118	Fungal isolates and metabolites in locally processed rice from five agro-ecological zones of Nigeria. Food Additives and Contaminants: Part B Surveillance, 2016, 9, 281-289.	2.8	6
119	Mould and mycotoxin exposure assessment of melon and bush mango seeds, two common soup thickeners consumed in Nigeria. International Journal of Food Microbiology, 2016, 237, 83-91.	4.7	22
120	A novel chemometric classification for FTIR spectra of mycotoxin-contaminated maize and peanuts at regulatory limits. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2016, 33, 1596-1607.	2.3	38
121	Determining and characterizing hapten loads for carrier proteins by MALDI-TOF MS and MALDI-TOF/RTOF MS. Methods, 2016, 104, 55-62.	3.8	4
122	A rapid genomic DNA extraction method and its combination with helicase dependent amplification for the detection of genetically modified maize. Analytical Methods, 2016, 8, 136-141.	2.7	13
123	The elemental composition of seedlings of selected Triticum sp. genotypes and of a commercial dietary supplement – a comparative analysis. Journal of Elementology, 2016, , .	0.2	0
124	New tricks of an old enemy: isolates of <scp><i>F</i></scp> <i>usarium graminearum</i> produce a type <scp>A</scp> trichothecene mycotoxin. Environmental Microbiology, 2015, 17, 2588-2600.	3.8	145
125	QCScreen: a software tool for data quality control in LC-HRMS based metabolomics. BMC Bioinformatics, 2015, 16, 341.	2.6	16
126	Effects of Wheat Naturally Contaminated with Fusarium Mycotoxins on Growth Performance and Selected Health Indices of Red Tilapia (Oreochromis niloticus × O. mossambicus). Toxins, 2015, 7, 1929-1944.	3.4	27

#	Article	IF	CITATIONS
127	The Metabolic Fate of Deoxynivalenol and Its Acetylated Derivatives in a Wheat Suspension Culture: Identification and Detection of DON-15-O-Glucoside, 15-Acetyl-DON-3-O-Glucoside and 15-Acetyl-DON-3-Sulfate. Toxins, 2015, 7, 3112-3126.	3.4	30
128	Presence of Multiple Mycotoxins and Other Fungal Metabolites in Native Grasses from a Wetland Ecosystem in Argentina Intended for Grazing Cattle. Toxins, 2015, 7, 3309-3329.	3.4	45
129	Bacterial Diversity and Mycotoxin Reduction During Maize Fermentation (Steeping) for Ogi Production. Frontiers in Microbiology, 2015, 6, 1402.	3.5	65
130	GC–MS based targeted metabolic profiling identifies changes in the wheat metabolome following deoxynivalenol treatment. Metabolomics, 2015, 11, 722-738.	3.0	117
131	Discrimination Between the Grain of Spelt and Common Wheat Hybrids and their Parental Forms Using Fourier Transform Infrared–Attenuated Total Reflection. International Journal of Food Properties, 2015, 18, 54-63.	3.0	10
132	Loop-Mediated Isothermal Amplification (LAMP) for the Detection of Horse Meat in Meat and Processed Meat Products. Food Analytical Methods, 2015, 8, 1576-1581.	2.6	35
133	Role of the European corn borer (<i>Ostrinia nubilalis</i>) on contamination of maize with 13 <i>Fusarium</i> mycotoxins. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2015, 32, 533-543.	2.3	41
134	Critical evaluation of indirect methods for the determination of deoxynivalenol and its conjugated forms in cereals. Analytical and Bioanalytical Chemistry, 2015, 407, 6009-6020.	3.7	20
135	Biotransformation of the Mycotoxin Deoxynivalenol in Fusarium Resistant and Susceptible Near Isogenic Wheat Lines. PLoS ONE, 2015, 10, e0119656.	2.5	93
136	Uncommon occurrence ratios of aflatoxin B1, B2, G1, and G2 in maize and groundnuts from Malawi. Mycotoxin Research, 2015, 31, 57-62.	2.3	50
137	Sm2, a paralog of the Trichoderma cerato-platanin elicitor Sm1, is also highly important for plant protection conferred by the fungal-root interaction of Trichoderma with maize. BMC Microbiology, 2015, 15, 2.	3.3	79
138	Fungal and bacterial metabolites associated with natural contamination of locally processed rice (<i>Oryza sativa</i> L) in Nigeria. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2015, 32, 950-959.	2.3	31
139	Aerobic and anaerobic <i>in vitro</i> testing of feed additives claiming to detoxify deoxynivalenol and zearalenone. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2015, 32, 922-933.	2.3	21
140	Mycotoxins and cyanogenic glycosides in staple foods of three indigenous people of the Colombian Amazon. Food Additives and Contaminants: Part B Surveillance, 2015, 8, 150922031753004.	2.8	7
141	Rhodococcus erythropolis MTHt3 biotransforms ergopeptines to lysergic acid. BMC Microbiology, 2015, 15, 73.	3.3	9
142	Determination of the Mycotoxin Content in Distiller's Dried Grain with Solubles Using a Multianalyte UHPLC–MS/MS Method. Journal of Agricultural and Food Chemistry, 2015, 63, 9441-9451.	5.2	36
143	Fast and efficient extraction of DNA from meat and meat derived products using aqueous ionic liquid buffer systems. New Journal of Chemistry, 2015, 39, 4994-5002.	2.8	20
144	Hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry for the quantification of uridine diphosphate-glucose, uridine diphosphate-glucuronic acid, deoxynivalenol and its glucoside: In-house validation and application to wheat. Journal of Chromatography A, 2015, 1423, 183-189.	3.7	13

#	Article	IF	CITATIONS
145	The development of a multiplex real-time PCR to quantify Fusarium DNA of trichothecene and fumonisin producing strains in maize. Analytical Methods, 2015, 7, 1358-1365.	2.7	14
146	Deoxynivalenol-sulfates: identification and quantification of novel conjugated (masked) mycotoxins in wheat. Analytical and Bioanalytical Chemistry, 2015, 407, 1033-1039.	3.7	68
147	Effects of orally administered fumonisin B1 (FB1), partially hydrolysed FB1, hydrolysed FB1 and N-(1-deoxy-D-fructos-1-yl) FB1 on the sphingolipid metabolism in rats. Food and Chemical Toxicology, 2015, 76, 11-18.	3.6	66
148	Advancements in IR spectroscopic approaches for the determination of fungal derived contaminations in food crops. Analytical and Bioanalytical Chemistry, 2015, 407, 653-660.	3.7	44
149	A rapid DNA lateral flow test for the detection of transgenic maize by isothermal amplification of the 35S promoter. Analytical Methods, 2015, 7, 129-134.	2.7	12
150	Fate of mycotoxins in two popular traditional cereal-based beverages (kunu-zaki and pito) from rural Nigeria. LWT - Food Science and Technology, 2015, 60, 137-141.	5.2	46
151	In vitro glucuronidation kinetics of deoxynivalenol by human and animal microsomes and recombinant human UGT enzymes. Archives of Toxicology, 2015, 89, 949-960.	4.2	52
152	Evaluation of Emerging Fusarium mycotoxins beauvericin, Enniatins, Fusaproliferin and Moniliformin in Domestic Rice in Iran. Iranian Journal of Pharmaceutical Research, 2015, 14, 505-12.	0.5	28
153	Synthesis of zearalenone-16-β,D-glucoside and zearalenone-16-sulfate: A tale of protecting resorcylic acid lactones for regiocontrolled conjugation. Beilstein Journal of Organic Chemistry, 2014, 10, 1129-1134.	2.2	15
154	Penicillium strains isolated from Slovak grape berries taxonomy assessment by secondary metabolite profile. Mycotoxin Research, 2014, 30, 213-220.	2.3	25
155	Response to Letter to the Editor regarding "Detection of the 35S promoter in transgenic maize via various isothermal amplification techniques: a practical approachâ€, Analytical and Bioanalytical Chemistry, 2014, 406, 8061-8062.	3.7	2
156	Advanced food analysis. Analytical and Bioanalytical Chemistry, 2014, 406, 6765-6766.	3.7	1
157	Relationship between lutein and mycotoxin content in durum wheat. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2014, 31, 1-10.	2.3	10
158	Methylthiodeoxynivalenol (MTD): insight into the chemistry, structure and toxicity of thia-Michael adducts of trichothecenes. Organic and Biomolecular Chemistry, 2014, 12, 5144.	2.8	20
159	Direct extraction of genomic DNA from maize with aqueous ionic liquid buffer systems for applications in genetically modified organisms analysis. Analytical and Bioanalytical Chemistry, 2014, 406, 7773-7784.	3.7	25
160	Untargeted Profiling of Tracer-Derived Metabolites Using Stable Isotopic Labeling and Fast Polarity-Switching LC–ESI-HRMS. Analytical Chemistry, 2014, 86, 11533-11537.	6.5	52
161	A survey of mycotoxins in domestic rice in Iran by liquid chromatography tandem mass spectrometry. Toxicology Mechanisms and Methods, 2014, 24, 37-41.	2.7	25
162	Utilising an LC-MS/MS-based multi-biomarker approach to assess mycotoxin exposure in the Bangkok metropolitan area and surrounding provinces. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2014, 31, 2040-2046.	2.3	52

#	Article	IF	CITATIONS
163	Mycotoxin exposure in rural residents in northern Nigeria: A pilot study using multi-urinary biomarkers. Environment International, 2014, 66, 138-145.	10.0	129
164	A novel stable isotope labelling assisted workflow for improved untargeted LC–HRMS based metabolomics research. Metabolomics, 2014, 10, 754-769.	3.0	84
165	Isolation and Structure Elucidation of Pentahydroxyscirpene, a Trichothecene Fusarium Mycotoxin. Journal of Natural Products, 2014, 77, 188-192.	3.0	10
166	Fungal and bacterial metabolites of stored maize (Zea mays, L.) from five agro-ecological zones of Nigeria. Mycotoxin Research, 2014, 30, 89-102.	2.3	85
167	Stereoselective Luche Reduction of Deoxynivalenol and Three of Its Acetylated Derivatives at C8. Toxins, 2014, 6, 325-336.	3.4	11
168	Optimization and validation of a quantitative liquid chromatography–tandem mass spectrometric method covering 295 bacterial and fungal metabolites including all regulated mycotoxins in four model food matrices. Journal of Chromatography A, 2014, 1362, 145-156.	3.7	373
169	Zearalenone-16- <i>O</i> -glucoside: A New Masked Mycotoxin. Journal of Agricultural and Food Chemistry, 2014, 62, 1181-1189.	5.2	81
170	Automated LC-HRMS(/MS) Approach for the Annotation of Fragment Ions Derived from Stable Isotope Labeling-Assisted Untargeted Metabolomics. Analytical Chemistry, 2014, 86, 7320-7327.	6.5	22
171	Detection of the food allergen celery via loop-mediated isothermal amplification technique. Analytical and Bioanalytical Chemistry, 2014, 406, 6827-6833.	3.7	18
172	Detection of the 35S promoter in transgenic maize via various isothermal amplification techniques: a practical approach. Analytical and Bioanalytical Chemistry, 2014, 406, 6835-6842.	3.7	25
173	Multimycotoxin analysis of sorghum (Sorghum bicolor L. Moench) and finger millet (Eleusine) Tj ETQq1 1 0.7843	14.rgBT /	Overlock 10
174	Liquid chromatography-mass spectrometry for the determination of chemical contaminants in food. TrAC - Trends in Analytical Chemistry, 2014, 59, 59-72.	11.4	154
175	Sulfation of deoxynivalenol, its acetylated derivatives, and T2-toxin. Tetrahedron, 2014, 70, 5260-5266.	1.9	16
176	Mycological Analysis and Multimycotoxins in Maize from Rural Subsistence Farmers in the Former Transkei, South Africa. Journal of Agricultural and Food Chemistry, 2013, 61, 8232-8240.	5.2	47
177	Rapid detection in food and feed. Analytical and Bioanalytical Chemistry, 2013, 405, 7717-7718.	3.7	3
178	LC-MS/MS-based multibiomarker approaches for the assessment of human exposure to mycotoxins. Analytical and Bioanalytical Chemistry, 2013, 405, 5687-5695.	3.7	88
179	Metabolomics and metabolite profiling. Analytical and Bioanalytical Chemistry, 2013, 405, 5003-5004.	3.7	38
180	Stable isotopic labelling-assisted untargeted metabolic profiling reveals novel conjugates of the mycotoxin deoxynivalenol in wheat. Analytical and Bioanalytical Chemistry, 2013, 405, 5031-5036	3.7	102

#	Article	IF	CITATIONS
181	Determination of multi-mycotoxin occurrence in cereals, nuts and their products in Cameroon by liquid chromatography tandem mass spectrometry (LC-MS/MS). Food Control, 2013, 31, 438-453.	5.5	170
182	Survey of deoxynivalenol and its conjugates deoxynivalenol-3-glucoside and 3-acetyl-deoxynivalenol in 374 beer samples. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2013, 30, 137-146.	2.3	91
183	Simultaneous preparation of $\hat{l} \pm / \hat{l}^2$ -zearalenol glucosides and glucuronides. Carbohydrate Research, 2013, 373, 59-63.	2.3	22
184	Deoxynivalenol and other selected Fusarium toxins in Swedish oats — Occurrence and correlation to specific Fusarium species. International Journal of Food Microbiology, 2013, 167, 276-283.	4.7	123
185	New insights into the human metabolism of the Fusarium mycotoxins deoxynivalenol and zearalenone. Toxicology Letters, 2013, 220, 88-94.	0.8	165
186	Deoxynivalenol and other selected Fusarium toxins in Swedish wheat — Occurrence and correlation to specific Fusarium species. International Journal of Food Microbiology, 2013, 167, 284-291.	4.7	120
187	Can Polish wheat (Triticum polonicum L.) be an interesting gene source for breeding wheat cultivars with increased resistance to Fusarium head blight?. Genetic Resources and Crop Evolution, 2013, 60, 2359-2373.	1.6	36
188	Bio-monitoring of mycotoxin exposure in Cameroon using a urinary multi-biomarker approach. Food and Chemical Toxicology, 2013, 62, 927-934.	3.6	102
189	Urinary analysis reveals high deoxynivalenol exposure in pregnant women from Croatia. Food and Chemical Toxicology, 2013, 62, 231-237.	3.6	71
190	Multiple mycotoxin exposure determined by urinary biomarkers in rural subsistence farmers in the former Transkei, South Africa. Food and Chemical Toxicology, 2013, 62, 217-225.	3.6	123
191	Development and validation of a (semi-)quantitative UHPLC-MS/MS method for the determination of 191 mycotoxins and other fungal metabolites in almonds, hazelnuts, peanuts and pistachios. Analytical and Bioanalytical Chemistry, 2013, 405, 5087-5104.	3.7	137
192	Fusarium Damage in Small Cereal Grains from Western Canada. 2. Occurrence of Fusarium Toxins and Their Source Organisms in Durum Wheat Harvested in 2010. Journal of Agricultural and Food Chemistry, 2013, 61, 5438-5448.	5.2	54
193	Multi-Mycotoxin Screening Reveals the Occurrence of 139 Different Secondary Metabolites in Feed and Feed Ingredients. Toxins, 2013, 5, 504-523.	3.4	260
194	Sulfation of β-resorcylic acid esters—first synthesis of zearalenone-14-sulfate. Tetrahedron Letters, 2013, 54, 3290-3293.	1.4	15
195	Gentiobiosylation of β-Resorcylic Acid Esters and Lactones: First Synthesis and Characterization of Zearalenone-14-β,d-Gentiobioside. Synlett, 2013, 24, 1830-1834.	1.8	5
196	lsotope-Assisted Screening for Iron-Containing Metabolites Reveals a High Degree of Diversity among Known and Unknown Siderophores Produced by Trichoderma spp. Applied and Environmental Microbiology, 2013, 79, 18-31.	3.1	81
197	Faces of a Changing Climate: Semi-Quantitative Multi-Mycotoxin Analysis of Grain Grown in Exceptional Climatic Conditions in Norway. Toxins, 2013, 5, 1682-1697.	3.4	119
198	Cooccurrence of Mycotoxins in Maize and Poultry Feeds from Brazil by Liquid Chromatography/Tandem Mass Spectrometry. Scientific World Journal, The, 2013, 2013, 1-9.	2.1	37

#	Article	IF	CITATIONS
199	Occurrence, mycotoxins and toxicity of Fusarium species from Abelmoschus esculentus and Sesamum indicum seeds. Mycotoxins, 2013, 63, 27-38.	0.2	0
200	Determination of multiple mycotoxins levels in poultry feeds from Cameroon. Japanese Journal of Veterinary Research, 2013, 61 Suppl, S33-9.	0.7	3
201	MetExtract: a new software tool for the automated comprehensive extraction of metabolite-derived LC/MS signals in metabolomics research. Bioinformatics, 2012, 28, 736-738.	4.1	68
202	Investigation of the Hepatic Glucuronidation Pattern of the Fusarium Mycotoxin Deoxynivalenol in Various Species. Chemical Research in Toxicology, 2012, 25, 2715-2717.	3.3	73
203	Quantitation of Mycotoxins in Food and Feed from Burkina Faso and Mozambique Using a Modern LC-MS/MS Multitoxin Method. Journal of Agricultural and Food Chemistry, 2012, 60, 9352-9363.	5.2	204
204	Microbial secondary metabolites in school buildings inspected for moisture damage in Finland, The Netherlands and Spain. Journal of Environmental Monitoring, 2012, 14, 2044.	2.1	48
205	Assessment of human deoxynivalenol exposure using an LC–MS/MS based biomarker method. Toxicology Letters, 2012, 211, 85-90.	0.8	145
206	Metabolism of the masked mycotoxin deoxynivalenol-3-glucoside in rats. Toxicology Letters, 2012, 213, 367-373.	0.8	146
207	Synthesis and characterization of colloidal gold particles as labels for antibodies as used in lateral flow devices. Analyst, The, 2012, 137, 1882.	3.5	13
208	Heterochromatin influences the secondary metabolite profile in the plant pathogen Fusarium graminearum. Fungal Genetics and Biology, 2012, 49, 39-47.	2.1	66
209	Development and validation of a rapid multiâ€biomarker liquid chromatography/tandem mass spectrometry method to assess human exposure to mycotoxins. Rapid Communications in Mass Spectrometry, 2012, 26, 1533-1540.	1.5	121
210	Establishment and Application of a Metabolomics Workflow for Identification and Profiling of Volatiles from Leaves of <i>Vitis vinifera</i> by HS‣PMEâ€GCâ€MS. Phytochemical Analysis, 2012, 23, 345-358	. ^{2.4}	34
211	Recent advances in food analysis. Analytical and Bioanalytical Chemistry, 2012, 403, 2795-2796.	3.7	4
212	Yeast cell based feed additives: studies on aflatoxin B ₁ and zearalenone. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2012, 29, 217-231.	2.3	41
213	Challenges and trends in the determination of selected chemical contaminants and allergens in food. Analytical and Bioanalytical Chemistry, 2012, 402, 139-162.	3.7	57
214	Stable isotope dilution assay for the accurate determination of mycotoxins in maize by UHPLC-MS/MS. Analytical and Bioanalytical Chemistry, 2012, 402, 2675-2686.	3.7	112
215	Isolation and Characterization of a New Less-Toxic Derivative of theFusariumMycotoxin Diacetoxyscirpenol after Thermal Treatment. Journal of Agricultural and Food Chemistry, 2011, 59, 9709-9714.	5.2	20
216	Evaluation of settled floor dust for the presence of microbial metabolites and volatile anthropogenic chemicals in indoor environments by LC–MS/MS and GC–MS methods. Talanta, 2011, 85, 2027-2038.	5.5	22

#	Article	IF	CITATIONS
217	Hydrolytic fate of deoxynivalenol-3-glucoside during digestion. Toxicology Letters, 2011, 206, 264-267.	0.8	216
218	Direct quantification of deoxynivalenol glucuronide in human urine as biomarker of exposure to the Fusarium mycotoxin deoxynivalenol. Analytical and Bioanalytical Chemistry, 2011, 401, 195-200.	3.7	57
219	A rapid fluorescence polarization immunoassay for the determination of T-2 and HT-2 toxins in wheat. Analytical and Bioanalytical Chemistry, 2011, 401, 2561-2571.	3.7	37
220	Overexpression of the UGT73C6 alters brassinosteroid glucoside formation in Arabidopsis thaliana. BMC Plant Biology, 2011, 11, 51.	3.6	93
221	Health Canada: Current Topics in Food Chemical Safety Research. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2011, 28, 695-695.	2.3	0
222	Mycotoxin profiles in the grain of <i>Triticum monococcum</i> , <i>Triticum dicoccum</i> and <i>Triticum spelta</i> after head infection with <i>Fusarium culmorum</i> . Journal of the Science of Food and Agriculture, 2010, 90, 556-565.	3.5	23
223	Degradation of fumonisin B1 by the consecutive action of two bacterial enzymes. Journal of Biotechnology, 2010, 145, 120-129.	3.8	111
224	Application of an LC–MS/MS based multi-mycotoxin method for the semi-quantitative determination of mycotoxins occurring in different types of food infected by moulds. Food Chemistry, 2010, 119, 408-416.	8.2	189
225	Cleavage of Zearalenone by <i>Trichosporon mycotoxinivorans</i> to a Novel Nonestrogenic Metabolite. Applied and Environmental Microbiology, 2010, 76, 2353-2359.	3.1	92
226	Rapid Surface Plasmon Resonance Immunoassay for the Determination of Deoxynivalenol in Wheat, Wheat Products, and Maize-Based Baby Food. Journal of Agricultural and Food Chemistry, 2010, 58, 8936-8941.	5.2	33
227	Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. Journal of Microbiological Methods, 2010, 81, 187-193.	1.6	236
228	A rapid optical immunoassay for the screening of T-2 and HT-2 toxin in cereals and maize-based baby food. Talanta, 2010, 81, 630-636.	5.5	81
229	Discriminant analysis of selected yield components and fatty acid composition of chosen Triticum monococcum, Triticum dicoccum and Triticum spelta accessions. Journal of Cereal Science, 2009, 49, 310-315.	3.7	44
230	Rapid test strips for analysis of mycotoxins in food and feed. Analytical and Bioanalytical Chemistry, 2009, 393, 67-71.	3.7	128
231	Formation, determination and significance of masked and other conjugated mycotoxins. Analytical and Bioanalytical Chemistry, 2009, 395, 1243-1252.	3.7	192
232	Difficulties in fumonisin determination: the issue of hidden fumonisins. Analytical and Bioanalytical Chemistry, 2009, 395, 1335-1345.	3.7	107
233	Simultaneous determination of 186 fungal and bacterial metabolites in indoor matrices by liquid chromatography/tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 2009, 395, 1355-1372.	3.7	159
234	Mycotoxins. Analytical and Bioanalytical Chemistry, 2009, 395, 1203-1204.	3.7	5

#	Article	IF	CITATIONS
235	A rapid lateral flow test for the determination of total type B fumonisins in maize. Analytical and Bioanalytical Chemistry, 2009, 395, 1309-1316.	3.7	75
236	A reference-gene-based quantitative PCR method as a tool to determine Fusarium resistance in wheat. Analytical and Bioanalytical Chemistry, 2009, 395, 1385-1394.	3.7	29
237	Loss of Pyrrolizidine Alkaloids on Decomposition of Ragwort (<i>Senecio jacobaea</i>) as Measured by LC-TOF-MS. Journal of Agricultural and Food Chemistry, 2009, 57, 3669-3673.	5.2	35
238	Occurrence of deoxynivalenol and its 3- <i>β</i> -D-glucoside in wheat and maize. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2009, 26, 507-511.	2.3	163
239	Preparation and characterization of the conjugatedFusariummycotoxins zearalenone-4O-β-D-glucopyranoside, α-zearalenol-4O-β-D-glucopyranoside and β-zearalenol-4O-β-D-glucopyranoside by MS/MS and two-dimensional NMR. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2009, 26, 207-213.	2.3	28
240	Occurrence of Deoxynivalenol and Its Major Conjugate, Deoxynivalenol-3-Glucoside, in Beer and Some Brewing Intermediates. Journal of Agricultural and Food Chemistry, 2009, 57, 3187-3194.	5.2	150
241	Concentrations of Some Metabolites Produced by Fungi of the Genus <i>Fusarium</i> and Selected Elements in Spring Spelt Grain. Cereal Chemistry, 2009, 86, 52-60.	2.2	10
242	Toxigenicity and pathogenicity of Fusarium poae and Fusarium avenaceum on wheat. European Journal of Plant Pathology, 2008, 122, 265-276.	1.7	76
243	Recent developments in the application of liquid chromatography–tandem mass spectrometry for the determination of organic residues and contaminants. Analytical and Bioanalytical Chemistry, 2008, 390, 253-256.	3.7	18
244	Simultaneous determination of six major ergot alkaloids and their epimers in cereals and foodstuffs by LC–MS–MS. Analytical and Bioanalytical Chemistry, 2008, 391, 563-576.	3.7	113
245	Characterisation of the peptaibiome of the biocontrol fungus <i>Trichoderma atroviride</i> by liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2008, 22, 1889-1898.	1.5	23
246	Retention pattern profiling of fungal metabolites on mixed-mode reversed-phase/weak anion exchange stationary phases in comparison to reversed-phase and weak anion exchange separation materials by liquid chromatography–electrospray ionisation-tandem mass spectrometry. Journal of Chromatography A, 2008, 1191, 171-181.	3.7	85
247	Significance, chemistry and determination of ergot alkaloids: A review. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2008, 25, 722-731.	2.3	126
248	Development of Qualitative and Semiquantitative Immunoassay-Based Rapid Strip Tests for the Detection of T-2 Toxin in Wheat and Oat. Journal of Agricultural and Food Chemistry, 2008, 56, 2589-2594.	5.2	118
249	Mycotoxin analysis: An update. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2008, 25, 152-163.	2.3	285
250	Effect of fungal strain and cereal substrate on <i>in vitro</i> mycotoxin production by <i>Fusarium poae</i> and <i>Fusarium avenaceum</i> . Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2008, 25, 745-757.	2.3	59
251	Determination of Ergot Alkaloids: Purity and Stability Assessment of Standards and Optimization of Extraction Conditions for Cereal Samples. Journal of AOAC INTERNATIONAL, 2008, 91, 1363-1371.	1.5	15
252	Determination of ergot alkaloids: purity and stability assessment of standards and optimization of extraction conditions for cereal samples. Journal of AOAC INTERNATIONAL, 2008, 91, 1363-71.	1.5	2

#	Article	IF	CITATIONS
253	Determination of molar absorptivity coefficients for major type-B trichothecenes and certification of calibrators for deoxynivalenol and nivalenol. Analytical and Bioanalytical Chemistry, 2007, 388, 1215-1226.	3.7	18
254	Optimisation of a sample preparation procedure for the screening of fungal infection and assessment of deoxynivalenol content in maize using mid-infrared attenuated total reflection spectroscopy. Food Additives and Contaminants, 2007, 24, 721-729.	2.0	25
255	Application of a liquid chromatography–tandem mass spectrometric method to multi-mycotoxin determination in raw cereals and evaluation of matrix effects. Food Additives and Contaminants, 2007, 24, 1184-1195.	2.0	88
256	Profiling of trichorzianines in culture samples of <i>Trichoderma atroviride</i> by liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2007, 21, 3963-3970.	1.5	25
257	Chromatographic methods for the simultaneous determination of mycotoxins and their conjugates in cereals. International Journal of Food Microbiology, 2007, 119, 33-37.	4.7	131
258	Short review: Metabolism of theFusarium mycotoxins deoxynivalenol and zearalenone in plants. Mycotoxin Research, 2007, 23, 68-72.	2.3	31
259	Production of zearalenone-4-glucoside, a-zearalenol-4-glucoside and ß-zearalenol-4-glucoside. Mycotoxin Research, 2007, 23, 180-184.	2.3	10
260	Characterization of (13C24) T-2 toxin and its use as an internal standard for the quantification of T-2 toxin in cereals with HPLC–MS/MS. Analytical and Bioanalytical Chemistry, 2007, 389, 931-940.	3.7	33
261	A liquid chromatography/tandem mass spectrometric multi-mycotoxin method for the quantification of 87 analytes and its application to semi-quantitative screening of moldy food samples. Analytical and Bioanalytical Chemistry, 2007, 389, 1505-1523.	3.7	376
262	Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) determination of phase II metabolites of the mycotoxin zearalenone in the model plantArabidopsis thaliana. Food Additives and Contaminants, 2006, 23, 1194-1200.	2.0	98
263	Validated Method for the Determination of the Ethanol Consumption Markers Ethyl Glucuronide, Ethyl Phosphate, and Ethyl Sulfate in Human Urine by Reversed-Phase/Weak Anion Exchange Liquid Chromatographyâ^'Tandem Mass Spectrometry. Analytical Chemistry, 2006, 78, 5884-5892.	6.5	90
264	Feasibility Study for the Production of Certified Calibrants for the Determination of Deoxynivalenol and Other B-Trichothecenes: Intercomparison Study. Journal of AOAC INTERNATIONAL, 2006, 89, 1573-1580.	1.5	4
265	Development and validation of a liquid chromatography/tandem mass spectrometric method for the determination of 39 mycotoxins in wheat and maize. Rapid Communications in Mass Spectrometry, 2006, 20, 2649-2659.	1.5	615
266	Suitability of a fully 13C isotope labeled internal standard for the determination of the mycotoxin deoxynivalenol by LC-MS/MS without clean up. Analytical and Bioanalytical Chemistry, 2006, 384, 692-696.	3.7	63
267	Mycotoxin analysis: state-of-the-art and future trends. Analytical and Bioanalytical Chemistry, 2006, 387, 145-148.	3.7	73
268	Characterization and application of isotope-substituted (13C15)-deoxynivalenol (DON) as an internal standard for the determination of DON. Food Additives and Contaminants, 2006, 23, 1187-1193.	2.0	19
269	Heterologous Expression of Arabidopsis UDP-Glucosyltransferases in Saccharomyces cerevisiae for Production of Zearalenone-4-O-Glucoside. Applied and Environmental Microbiology, 2006, 72, 4404-4410.	3.1	74
270	Feasibility study for the production of certified calibrants for the determination of deoxynivalenol and other B-trichothecenes: intercomparison study. Journal of AOAC INTERNATIONAL, 2006, 89, 1573-80.	1.5	2

#	Article	IF	CITATIONS
271	Rapid simultaneous determination of major type A- and B-trichothecenes as well as zearalenone in maize by high performance liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 2005, 1062, 209-216.	3.7	254
272	Advances in the analysis of mycotoxins and its quality assurance. Food Additives and Contaminants, 2005, 22, 345-353.	2.0	94
273	The Ability to Detoxify the Mycotoxin Deoxynivalenol Colocalizes With a Major Quantitative Trait Locus for Fusarium Head Blight Resistance in Wheat. Molecular Plant-Microbe Interactions, 2005, 18, 1318-1324.	2.6	362
274	Masked Mycotoxins:Â Determination of a Deoxynivalenol Glucoside in Artificially and Naturally Contaminated Wheat by Liquid Chromatographyâ^'Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2005, 53, 3421-3425.	5.2	346
275	A rapid and sensitive GC–MS method for determination of 1,3-dichloro-2-propanol in water. Analytical and Bioanalytical Chemistry, 2005, 382, 366-371.	3.7	18
276	Processing and purity assessment of standards for the analysis of type-B trichothecene mycotoxins. Analytical and Bioanalytical Chemistry, 2005, 382, 1848-1858.	3.7	22
277	Type-B trichothecene calibrants: Comparison of HPLC and GC-results within an intercomparison study. Mycotoxin Research, 2005, 21, 224-230.	2.3	2
278	Sandwich Immunoassays for the Determination of Peanut and Hazelnut Traces in Foods. Journal of Agricultural and Food Chemistry, 2005, 53, 3321-3327.	5.2	62
279	The G protein α subunit Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. Fungal Genetics and Biology, 2005, 42, 749-760.	2.1	158
280	Preparation and Certification of Zearalenone Mass Concentration of Two Low-Level Maize Reference Materials. Journal of AOAC INTERNATIONAL, 2004, 87, 892-908.	1.5	3
281	Purity Assessment of Commercially Available Crystalline Deoxynivalenol. Journal of AOAC INTERNATIONAL, 2004, 87, 909-919.	1.5	17
282	The Effect of Inoculation Treatment and Long-term Application of Moisture on Fusarium Head Blight Symptoms and Deoxynivalenol Contamination in Wheat Grains. European Journal of Plant Pathology, 2004, 110, 299-308.	1.7	51
283	Evaluation of the long-term performance of water-analyzing laboratories. Accreditation and Quality Assurance, 2004, 9, 82-89.	0.8	4
284	A comparative study of mid-infrared diffuse reflection (DR) and attenuated total reflection (ATR) spectroscopy for the detection of fungal infection on RWA2-corn. Analytical and Bioanalytical Chemistry, 2004, 378, 159-166.	3.7	38
285	Production of a calibrant certified reference material for determination of the estrogenic mycotoxin zearalenone. Analytical and Bioanalytical Chemistry, 2004, 378, 1182-1189.	3.7	11
286	Technology and applications of protein microarrays. Analytical and Bioanalytical Chemistry, 2004, 379, 338-340.	3.7	7
287	Purity assessment of commercially available crystalline deoxynivalenol. Journal of AOAC INTERNATIONAL, 2004, 87, 909-19.	1.5	4
288	Interlaboratory comparison study for the determination of methyl tert -butyl ether in water. Analytical and Bioanalytical Chemistry, 2003, 377, 1140-1147.	3.7	18

#	Article	IF	CITATIONS
289	Purification of peanut proteins for further use in affinity chromatography and as immunogens. Journal of Separation Science, 2003, 26, 1284-1286.	2.5	1
290	Development of a Method for the Determination of Fusarium Fungi on Corn Using Mid-Infrared Spectroscopy with Attenuated Total Reflection and Chemometrics. Analytical Chemistry, 2003, 75, 1211-1217.	6.5	105
291	A Sensitive and Inexpensive Yeast Bioassay for the Mycotoxin Zearalenone and Other Compounds with Estrogenic Activity. Applied and Environmental Microbiology, 2003, 69, 805-811.	3.1	39
292	Detoxification of the Fusarium Mycotoxin Deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. Journal of Biological Chemistry, 2003, 278, 47905-47914.	3.4	472
293	Purity Assessment of Crystalline Zearalenone. Journal of AOAC INTERNATIONAL, 2003, 86, 722-728.	1.5	11
294	Preparation of a calibrant as certified reference material for determination of the Fusarium mycotoxin zearalenone. Journal of AOAC INTERNATIONAL, 2003, 86, 50-60.	1.5	7
295	Trendbericht Analytische Chemie 2000/2001. Nachrichten Aus Der Chemie, 2002, 50, 483-487.	0.0	1
296	Fourier transform mid-infrared spectroscopy with attenuated total reflection (FT-IR/ATR) as a tool for the detection of Fusarium fungi on maize. Vibrational Spectroscopy, 2002, 29, 115-119.	2.2	79
297	A Proficiency Testing System for the Determination of Volatile Halogenated Hydrocarbons at μg/L Concentration Level in Water. International Journal of Environmental Analytical Chemistry, 2001, 81, 1-14.	3.3	Ο
298	Analytische Chemie ―Spektroskopie. Nachrichten Aus Der Chemie, 2000, 48, 468-472.	0.0	1
299	Analytische Chemie 1999. Nachrichten Aus Der Chemie, 2000, 48, 348-354.	0.0	1
300	Development of an Enzyme Immunoassay for the Determination of the Herbicide Metsulfuron-Methyl Based on Chicken Egg Yolk Antibodies. International Journal of Environmental Analytical Chemistry, 2000, 78, 279-288.	3.3	7
301	Analytik von Fusariumâ€Mykotoxinen in Europe. Nachrichten Aus Der Chemie, 1999, 47, 553-556.	0.0	3
302	Performance of modern sample preparation techniques in the analysis of Fusarium mycotoxins in cereals. Journal of Chromatography A, 1998, 815, 49-57.	3.7	84
303	Supercritical Fluid Extraction Versus Ultrasonic Extraction for the Analysis of Polycyclic Aromatic Hydrocarbons from Reference Sediments. International Journal of Environmental Analytical Chemistry, 1998, 72, 289-300.	3.3	2
304	Accumulation of the Mycotoxin Beauvericin in Kernels of Corn Hybrids Inoculated withFusariumsubglutinans. Journal of Agricultural and Food Chemistry, 1996, 44, 3665-3667.	5.2	22
305	Pyrrolizidine Alkaloids. , 0, , 10-30.		3
306	Impact of sowing time, hybrid and environmental conditions on the contamination of maize by emerging mycotoxins and fungal metabolites. Italian Journal of Agronomy, 0, , .	1.0	19

#	Article	IF	CITATIONS
307	Presence of Alternaria toxins in maize from Republic of Serbia during 2016–2017. Journal of Food Processing and Preservation, 0, , e15827.	2.0	1