
Ramli Arifin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8822583/publications.pdf Version: 2024-02-01

RAMII ADIFIN

#	Article	IF	CITATIONS
1	Synthesis and characterization of Dy3+ doped zinc–lead-phosphate glass. Optical Materials, 2013, 35, 1103-1108.	3.6	90
2	Structural and optical study of samarium doped lead zinc phosphate glasses. Optics Communications, 2013, 300, 204-209.	2.1	87
3	Gold nanoparticles assisted surface enhanced Raman scattering and luminescence of Er3+ doped zinc–sodium tellurite glass. Journal of Luminescence, 2015, 159, 265-273.	3.1	58
4	Non-spherical gold nanoparticles mediated surface plasmon resonance in Er3+ doped zinc–sodium tellurite glasses: Role of heat treatment. Journal of Luminescence, 2014, 149, 138-143.	3.1	53
5	Up-conversion enhancement in Er3+-Ag co-doped zinc tellurite glass: Effect of heat treatment. Journal of Non-Crystalline Solids, 2012, 358, 2939-2942.	3.1	47
6	Plasmonic enhanced luminescence in Er3+:Ag co-doped tellurite glass. Journal of Molecular Structure, 2013, 1033, 79-83.	3.6	46
7	Effect of natural Fe3O4 nanoparticles on structural and optical properties of Er3+ doped tellurite glass. Journal of Magnetism and Magnetic Materials, 2013, 326, 123-128.	2.3	44
8	Natural Fe3O4 nanoparticles embedded zinc–tellurite glasses: Polarizability and optical properties. Materials Chemistry and Physics, 2013, 138, 174-178.	4.0	42
9	Annealing time dependent up-conversion luminescence enhancement in magnesium–tellurite glass. Journal of Luminescence, 2013, 136, 145-149.	3.1	35
10	Optical properties of gold nanoparticle embedded Er3+ doped lead–tellurite glasses. Journal of Alloys and Compounds, 2014, 607, 85-90.	5.5	35
11	Modification of structural and physical properties of samarium doped zinc phosphate glasses due to the inclusion of nickel oxide nanoparticles. Journal of Non-Crystalline Solids, 2015, 411, 53-58.	3.1	32
12	Gold nanoparticles assisted structural and spectroscopic modification in Er3+-doped zinc sodium tellurite glass. Optical Materials, 2015, 42, 495-505.	3.6	27
13	Efficient optical enhancement of Er3+ doped lead–tellurite glass embedded with gold nanoparticles: role of heat-treatment. Journal of Non-Crystalline Solids, 2015, 410, 174-179.	3.1	25
14	Thermal, structural and magnetic properties of zinc-tellurite glasses containing natural ferrite oxide. Materials Letters, 2013, 108, 289-292.	2.6	21
15	A Model for Enhanced Up-Conversion Luminescence in Erbium-Doped Tellurite Glass Containing Silver Nanoparticles. Advanced Materials Research, 0, 501, 61-65.	0.3	16
16	Optical Absorption of Er ³⁺ /Nd ³⁺ Co-Doped Tellurite Glass. Advanced Materials Research, 0, 501, 96-100.	0.3	8
17	Luminescence Properties of Magnesium Phosphate Glass Doped Samarium. Advanced Materials Research, 0, 501, 111-115.	0.3	2
18	Luminescence from Silicon and Germanium Nanowires: A Phenomenological Model. Advanced Materials Research, 2014, 895, 424-428.	0.3	2

RAMLI ARIFIN

#	Article	IF	CITATIONS
19	Optical Absorption of Erbium Doped Tellurite Glass. Advanced Materials Research, 0, 895, 245-249.	0.3	2
20	Enhanced Luminescence from Erbium Doped Phosphate Glass Containing ZnO Nanoparticles. Advanced Materials Research, 2014, 895, 241-244.	0.3	2
21	Samarium Concentration and Optical Correlation of Tellurite Glass. Advanced Materials Research, 2015, 1107, 443-448.	0.3	2
22	Influence of Samarium on the Optical Response of Zinc Phosphate Glass. Advanced Materials Research, 2015, 1107, 403-408.	0.3	2
23	Silver Nanoparticles Included Er ³⁺ /Sm ³⁺ Co-Doped Phosphate Glass: Evaluation of Thermal Stability and Infrared Absorption. Solid State Phenomena, 0, 268, 62-66.	0.3	2
24	Improved Self-Cleaning and Spectral Features of Erbium Doped Tellurite Glass with Titania Nanoparticles Sensitization. Solid State Phenomena, 0, 268, 48-53.	0.3	2
25	Chemical Durability of Yb Doped Lead Tellurite Glass: Effect of Solution pH. Advanced Materials Research, 0, 501, 81-85.	0.3	1
26	Thermal and Structural Properties of Erbium/Neodymium Co-Doped Lithium-Magnesium-Tellurite Glass. Advanced Materials Research, 2015, 1107, 466-470.	0.3	1
27	Reduction of Hygroscopicity in Zinc-Calcium-Phosphate Glass via Iron-Oxide Incorporation. Solid State Phenomena, 0, 268, 82-86.	0.3	1
28	Study of Crystallization Kinetics of TeO ₂ -Na ₂ O-MgO Glass Using Ozawa Method: Influence of Europium. Advanced Materials Research, 0, 501, 116-120.	0.3	0
29	Optical Properties of Oxy-Chloride Tellurite Glass: Role of Samarium Ions. Advanced Materials Research, 0, 1107, 437-442.	0.3	0
30	Samarium Ions Concentration Dependent Optical Enhancement in Phosphate Glass. Advanced Materials Research, 0, 1107, 449-453.	0.3	0
31	Absorption and Raman Spectra of Dy ³⁺ Doped Tellurite Glass: Combined Effects of Silver and Titanium Nanoparticles. Solid State Phenomena, 0, 268, 111-116.	0.3	0
32	Hardness and Structure of Er ³⁺ :Sm ³⁺ Co-Doped Oxychloride Zinc Tellurite Glass. Solid State Phenomena, 0, 268, 43-47.	0.3	0
33	Luminescence Properties of Cerium Doped Iron Calcium Boroaluminate Glass. Solid State Phenomena, 2017, 268, 72-76.	0.3	0
34	Luminescence from Erbium Doped Tellurite Glass: An Insight on Titania Nanoparticles Surface Plasmon Mediation. Solid State Phenomena, 0, 268, 143-147.	0.3	0
35	Improved Hydrophobicity of Silicon Dioxide Integrated Zinc-Tellurite Glass Surface. Solid State Phenomena, 2017, 268, 87-91.	0.3	0
36	Role of Sm ³⁺ on Mn Nanoparticles Embedded Zinc Tellurite Glasses Absorption and Luminescence Characteristic. Materials Science Forum, 0, 981, 73-77.	0.3	0