
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8822434/publications.pdf Version: 2024-02-01

Ισα Δ Ταρας

#	Article	IF	CITATIONS
1	Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis. Nature Reviews Cardiology, 2022, 19, 228-249.	13.7	171
2	Synthesis of siRNA nanoparticles to silence plaque-destabilizing gene in atherosclerotic lesional macrophages. Nature Protocols, 2022, 17, 748-780.	12.0	52
3	Macrophages use apoptotic cell-derived methionine and DNMT3A during efferocytosis to promote tissue resolution. Nature Metabolism, 2022, 4, 444-457.	11.9	56
4	TAZ-induced Cybb contributes to liver tumor formation in non-alcoholic steatohepatitis. Journal of Hepatology, 2022, 76, 910-920.	3.7	27
5	The purinergic P2Y14 receptor links hepatocyte death to hepatic stellate cell activation and fibrogenesis in the liver. Science Translational Medicine, 2022, 14, eabe5795.	12.4	25
6	Maladaptive regeneration — the reawakening of developmental pathways in NASH and fibrosis. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 131-142.	17.8	64
7	Targeting Soluble DPP-4 for Insulin Resistance: Origin Matters. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e1460-e1462.	3.6	2
8	ODC (Ornithine Decarboxylase)-Dependent Putrescine Synthesis Maintains MerTK (MER) Tj ETQq0 0 0 rgBT /Ove Biology, 2021, 41, e144-e159.	rlock 10 T 2.4	f 50 467 Td 23
9	Macrophage AXL receptor tyrosine kinase inflames the heart after reperfused myocardial infarction. Journal of Clinical Investigation, 2021, 131, .	8.2	42
10	Deficiency of macrophage PHACTR1 impairs efferocytosis and promotes atherosclerotic plaque necrosis. Journal of Clinical Investigation, 2021, 131, .	8.2	31
11	Allosteric MAPKAPK2 inhibitors improve plaque stability in advanced atherosclerosis. PLoS ONE, 2021, 16, e0246600.	2.5	1
12	Hepatocyte TLR4 triggers inter-hepatocyte Jagged1/Notch signaling to determine NASH-induced fibrosis. Science Translational Medicine, 2021, 13, .	12.4	49
13	The neutrophil–lymphocyte ratio and incident atherosclerotic events: analyses from five contemporary randomized trials. European Heart Journal, 2021, 42, 896-903.	2.2	152
14	Efferocytosis induces macrophage proliferation to help resolve tissue injury. Cell Metabolism, 2021, 33, 2445-2463.e8.	16.2	98
15	Abstract 11646: <i>ATVB Outstanding Research Award</i> : WDFY3 is Required for the Efficient Degradation of Engulfed Apoptotic Cells by Macrophages During Efferocytosis. Circulation, 2021, 144,	1.6	0
16	Macrophage MerTK Promotes Liver Fibrosis in Nonalcoholic Steatohepatitis. Cell Metabolism, 2020, 31, 406-421.e7.	16.2	141
17	Efferocytosis in health and disease. Nature Reviews Immunology, 2020, 20, 254-267.	22.7	461
18	siRNA nanoparticles targeting CaMKIIÎ ³ in lesional macrophages improve atherosclerotic plaque stability in mice. Science Translational Medicine, 2020, 12, .	12.4	132

#	Article	IF	CITATIONS
19	PPARÎ ³ Deacetylation Confers the Antiatherogenic Effect and Improves Endothelial Function in Diabetes Treatment. Diabetes, 2020, 69, 1793-1803.	0.6	19
20	Mechanisms of Fibrosis Development in Nonalcoholic Steatohepatitis. Gastroenterology, 2020, 158, 1913-1928.	1.3	346
21	Macrophage Metabolism of Apoptotic Cell-Derived Arginine Promotes Continual Efferocytosis and Resolution of Injury. Cell Metabolism, 2020, 31, 518-533.e10.	16.2	235
22	Cholesterol Stabilizes TAZ in Hepatocytes to Promote Experimental Non-alcoholic Steatohepatitis. Cell Metabolism, 2020, 31, 969-986.e7.	16.2	117
23	Intracellular and Intercellular Aspects of Macrophage Immunometabolism in Atherosclerosis. Circulation Research, 2020, 126, 1209-1227.	4.5	116
24	Interacting hepatic PAI-1/tPA gene regulatory pathways influence impaired fibrinolysis severity in obesity. Journal of Clinical Investigation, 2020, 130, 4348-4359.	8.2	20
25	A Therapeutic Silencing RNA Targeting Hepatocyte TAZ Prevents and Reverses Fibrosis in Nonalcoholic Steatohepatitis in Mice. Hepatology Communications, 2019, 3, 1221-1234.	4.3	36
26	HMGB1–C1q complexes regulate macrophage function by switching between leukotriene and specialized proresolving mediator biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23254-23263.	7.1	64
27	Dachshund Depletion Disrupts Mammary Gland Development and Diverts the Composition of the Mammary Gland Progenitor Pool. Stem Cell Reports, 2019, 12, 135-151.	4.8	10
28	Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nature Reviews Cardiology, 2019, 16, 389-406.	13.7	684
29	TAM receptors in cardiovascular disease. Cardiovascular Research, 2019, 115, 1286-1295.	3.8	34
30	An ATF6-tPA pathway in hepatocytes contributes to systemic fibrinolysis and is repressed by DACH1. Blood, 2019, 133, 743-753.	1.4	23
31	The Markedly Increased PAI1 in Obesity Induces a Compensatory Increase of Hepatocyte Tpa Expression By Activating a LRP1-CREB1 Pathway. Blood, 2019, 134, 3625-3625.	1.4	1
32	Hepatocyte-secreted DPP4 in obesity promotes adipose inflammation and insulin resistance. Nature, 2018, 555, 673-677.	27.8	209
33	The role of non-resolving inflammation in atherosclerosis. Journal of Clinical Investigation, 2018, 128, 2713-2723.	8.2	189
34	Hepatocyte Notch activation induces liver fibrosis in nonalcoholic steatohepatitis. Science Translational Medicine, 2018, 10, .	12.4	151
35	Macrophage Inflammation, Erythrophagocytosis, and Accelerated Atherosclerosis in <i>Jak2</i> ^{<i>V617F</i>} Mice. Circulation Research, 2018, 123, e35-e47.	4.5	173
36	LXR Suppresses Inflammatory Gene Expression and Neutrophil Migration through cis-Repression and Cholesterol Efflux. Cell Reports, 2018, 25, 3774-3785.e4.	6.4	64

#	Article	IF	CITATIONS
37	Regulatory T Cells Promote Macrophage Efferocytosis during Inflammation Resolution. Immunity, 2018, 49, 666-677.e6.	14.3	270
38	MerTK signaling in macrophages promotes the synthesis of inflammation resolution mediators by suppressing CaMKII activity. Science Signaling, 2018, 11, .	3.6	97
39	Macrophage Trafficking, Inflammatory Resolution, and Genomics in Atherosclerosis. Journal of the American College of Cardiology, 2018, 72, 2181-2197.	2.8	139
40	Eradicating the Burden of Atherosclerotic Cardiovascular Disease by Lowering Apolipoprotein B Lipoproteins Earlier in Life. Journal of the American Heart Association, 2018, 7, e009778.	3.7	67
41	A New Activator of Hepatocyte CaMKII in Fasting and Type 2 Diabetes. Diabetes, 2018, 67, 1742-1744.	0.6	2
42	Hypercholesterolemia induces T cell expansion in humanized immune mice. Journal of Clinical Investigation, 2018, 128, 2370-2375.	8.2	40
43	Hepatocyte-Derived Tissue Plasminogen Activator Regulates Systemic Fibrinolysis. Blood, 2018, 132, 217-217.	1.4	0
44	microRNA-33 Regulates Macrophage Autophagy in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1058-1067.	2.4	158
45	Boosting Inflammation Resolution in Atherosclerosis. American Journal of Pathology, 2017, 187, 1211-1221.	3.8	147
46	Mitochondrial Oxidative Stress Promotes Atherosclerosis and Neutrophil Extracellular Traps in Aged Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, e99-e107.	2.4	79
47	2016 Russell Ross Memorial Lecture in Vascular Biology. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 183-189.	2.4	73
48	Mitochondrial Fission Promotes the Continued Clearance of Apoptotic Cells by Macrophages. Cell, 2017, 171, 331-345.e22.	28.9	249
49	Monocyte-Macrophages and T Cells in Atherosclerosis. Immunity, 2017, 47, 621-634.	14.3	462
50	MerTK Cleavage on Resident Cardiac Macrophages Compromises Repair After Myocardial Ischemia Reperfusion Injury. Circulation Research, 2017, 121, 930-940.	4.5	144
51	CAMKIIÎ ³ suppresses an efferocytosis pathway in macrophages and promotes atherosclerotic plaque necrosis. Journal of Clinical Investigation, 2017, 127, 4075-4089.	8.2	81
52	Mechanisms and Consequences of Defective Efferocytosis in Atherosclerosis. Frontiers in Cardiovascular Medicine, 2017, 4, 86.	2.4	193
53	MerTK receptor cleavage promotes plaque necrosis and defective resolution in atherosclerosis. Journal of Clinical Investigation, 2017, 127, 564-568.	8.2	158
54	Deficiency of AXL in Bone Marrow-Derived Cells Does Not Affect Advanced Atherosclerotic Lesion Progression. Scientific Reports, 2016, 6, 39111.	3.3	11

IRA A TABAS

#	Article	IF	CITATIONS
55	Hepatocyte DACH1 Is Increased in Obesity via Nuclear Exclusion of HDAC4 and Promotes Hepatic Insulin Resistance. Cell Reports, 2016, 15, 2214-2225.	6.4	45
56	MerTK cleavage limits proresolving mediator biosynthesis and exacerbates tissue inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6526-6531.	7.1	167
57	Targeted Interleukin-10 Nanotherapeutics Developed with a Microfluidic Chip Enhance Resolution of Inflammation in Advanced Atherosclerosis. ACS Nano, 2016, 10, 5280-5292.	14.6	170
58	Death-defying plaque cells. Nature, 2016, 536, 32-33.	27.8	16
59	An imbalance between specialized pro-resolving lipid mediators and pro-inflammatory leukotrienes promotes instability of atherosclerotic plaques. Nature Communications, 2016, 7, 12859.	12.8	320
60	Hepatocyte TAZ/WWTR1 Promotes Inflammation and Fibrosis in Nonalcoholic Steatohepatitis. Cell Metabolism, 2016, 24, 848-862.	16.2	279
61	Macrophage Phenotype and Function in Different Stages of Atherosclerosis. Circulation Research, 2016, 118, 653-667.	4.5	760
62	Suppression of Adaptive Immune Cell Activation Does Not Alter Innate Immune Adipose Inflammation or Insulin Resistance in Obesity. PLoS ONE, 2015, 10, e0135842.	2.5	12
63	Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice. Science Translational Medicine, 2015, 7, 275ra20.	12.4	269
64	Accelerating the Pace of Atherosclerosis Research. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 11-12.	2.4	27
65	Treatment of Obese Insulin-Resistant Mice With an Allosteric MAPKAPK2/3 Inhibitor Lowers Blood Glucose and Improves Insulin Sensitivity. Diabetes, 2015, 64, 3396-3405.	0.6	31
66	C/EBP-Homologous Protein (CHOP) in Vascular Smooth Muscle Cells Regulates Their Proliferation in Aortic Explants and Atherosclerotic Lesions. Circulation Research, 2015, 116, 1736-1743.	4.5	49
67	Recent insights into the cellular biology of atherosclerosis. Journal of Cell Biology, 2015, 209, 13-22.	5.2	798
68	How an Artery Heals. Circulation Research, 2015, 117, 909-913.	4.5	10
69	Identification of a Non-Growth Factor Role for GM-CSF in Advanced Atherosclerosis. Circulation Research, 2015, 116, e13-24.	4.5	73
70	A Potential Role for Regulatory T Cells in Apoptotic Cell Clearance by Macrophages in a Murine Model of Acute Lung Injury. FASEB Journal, 2015, 29, 148.3.	0.5	0
71	Common Therapeutic Targets in Cardiometabolic Disease. Science Translational Medicine, 2014, 6, 239ps5.	12.4	13
72	Macrophages Govern the Progression and Termination of Inflammation in Atherosclerosis and		0

Metabolic Diseases. , 2014, , 387-403.

#	Article	IF	CITATIONS
73	A new RIDDle in DC-mediated cross-presentation. Nature Immunology, 2014, 15, 213-215.	14.5	2
74	Macrophage Mitochondrial Oxidative Stress Promotes Atherosclerosis and Nuclear Factor-l̂ºB–Mediated Inflammation in Macrophages. Circulation Research, 2014, 114, 421-433.	4.5	209
75	Dendritic cells in atherosclerosis. Seminars in Immunopathology, 2014, 36, 93-102.	6.1	54
76	A Solvent-Free Thermosponge Nanoparticle Platform for Efficient Delivery of Labile Proteins. Nano Letters, 2014, 14, 6449-6455.	9.1	36
77	Resolvin D1 limits 5-lipoxygenase nuclear localization and leukotriene B ₄ synthesis by inhibiting a calcium-activated kinase pathway. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14530-14535.	7.1	164
78	Interleukin-3/Granulocyte Macrophage Colony–Stimulating Factor Receptor Promotes Stem Cell Expansion, Monocytosis, and Atheroma Macrophage Burden in Mice With Hematopoietic <i>ApoE</i> Deficiency. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 976-984.	2.4	65
79	Inflammation and its Resolution as Determinants of Acute Coronary Syndromes. Circulation Research, 2014, 114, 1867-1879.	4.5	424
80	An AXL/LRP-1/RANBP9 complex mediates DC efferocytosis and antigen cross-presentation in vivo. Journal of Clinical Investigation, 2014, 124, 1296-1308.	8.2	91
81	Activation of Calcium/Calmodulin-Dependent Protein Kinase II in Obesity Mediates Suppression of Hepatic Insulin Signaling. Cell Metabolism, 2013, 18, 803-815.	16.2	113
82	Treg-mediated suppression of atherosclerosis requires MYD88 signaling in DCs. Journal of Clinical Investigation, 2013, 123, 179-188.	8.2	134
83	Anti-Inflammatory Therapy in Chronic Disease: Challenges and Opportunities. Science, 2013, 339, 166-172.	12.6	905
84	The UPR in atherosclerosis. Seminars in Immunopathology, 2013, 35, 321-332.	6.1	111
85	Making Things Stick in the Fight Against Atherosclerosis. Circulation Research, 2013, 112, 1094-1096.	4.5	1
86	ACAT Inhibition Reduces the Progression of Preexisting, Advanced Atherosclerotic Mouse Lesions Without Plaque or Systemic Toxicity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 4-12.	2.4	34
87	Development and in vivo efficacy of targeted polymeric inflammation-resolving nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6506-6511.	7.1	184
88	Impaired MEK Signaling and SERCA Expression Promote ER Stress and Apoptosis in Insulin-Resistant Macrophages and Are Reversed by Exenatide Treatment. Diabetes, 2012, 61, 2609-2620.	0.6	51
89	FoxOs Integrate Pleiotropic Actions of Insulin in Vascular Endothelium to Protect Mice from Atherosclerosis. Cell Metabolism, 2012, 15, 372-381.	16.2	155
90	Macrophage Autophagy Plays a Protective Role in Advanced Atherosclerosis. Cell Metabolism, 2012, 15, 545-553.	16.2	529

#	Article	IF	CITATIONS
91	Calcium Signaling through CaMKII Regulates Hepatic Glucose Production in Fasting and Obesity. Cell Metabolism, 2012, 15, 739-751.	16.2	181
92	Inositol-1,4,5-trisphosphate receptor regulates hepatic gluconeogenesis in fasting and diabetes. Nature, 2012, 485, 128-132.	27.8	169
93	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
94	Toll-like receptor activation suppresses ER stress factor CHOP and translation inhibition through activation of eIF2B. Nature Cell Biology, 2012, 14, 192-200.	10.3	119
95	Bad matters made worse. Nature, 2012, 487, 306-308.	27.8	7
96	Role of Endoplasmic Reticulum Stress in Metabolic Disease and Other Disorders. Annual Review of Medicine, 2012, 63, 317-328.	12.2	374
97	Activation of ER stress and mTORC1 suppresses hepatic sortilin-1 levels in obese mice. Journal of Clinical Investigation, 2012, 122, 1677-1687.	8.2	96
98	Pulling down the plug on atherosclerosis: Finding the culprit in your heart. Nature Medicine, 2011, 17, 791-793.	30.7	31
99	Macrophages in the Pathogenesis of Atherosclerosis. Cell, 2011, 145, 341-355.	28.9	2,122
100	Autophagy Regulates Cholesterol Efflux from Macrophage Foam Cells via Lysosomal Acid Lipase. Cell Metabolism, 2011, 13, 655-667.	16.2	611
101	Insulin Resistance, Hyperglycemia, and Atherosclerosis. Cell Metabolism, 2011, 14, 575-585.	16.2	619
102	Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nature Cell Biology, 2011, 13, 184-190.	10.3	2,171
103	The role of macrophages and dendritic cells in the clearance of apoptotic cells in advanced atherosclerosis. European Journal of Immunology, 2011, 41, 2515-2518.	2.9	86
104	Homozygosity for an Allele Encoding Deacetylated FoxO1 Protects Macrophages From Cholesterol-Induced Inflammation Without Increasing Apoptosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2920-2928.	2.4	16
105	Shedding of the Mer Tyrosine Kinase Receptor Is Mediated by ADAM17 Protein through a Pathway Involving Reactive Oxygen Species, Protein Kinase CĨ´, and p38 Mitogen-activated Protein Kinase (MAPK). Journal of Biological Chemistry, 2011, 286, 33335-33344.	3.4	228
106	A reporter for tracking the UPR in vivo reveals patterns of temporal and cellular stress during atherosclerotic progression. Journal of Lipid Research, 2011, 52, 1033-1038.	4.2	24
107	Mechanisms of ER Stress-Induced Apoptosis in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2792-2797.	2.4	163
108	Efficient Phagocytosis Requires Triacylglycerol Hydrolysis by Adipose Triglyceride Lipase. Journal of Biological Chemistry, 2010, 285, 20192-20201.	3.4	126

#	Article	IF	CITATIONS
109	Macrophage death and defective inflammation resolution in atherosclerosis. Nature Reviews Immunology, 2010, 10, 36-46.	22.7	930
110	Induction of ER Stress in Macrophages of Tuberculosis Granulomas. PLoS ONE, 2010, 5, e12772.	2.5	127
111	NADPH oxidase links endoplasmic reticulum stress, oxidative stress, and PKR activation to induce apoptosis. Journal of Cell Biology, 2010, 191, 1113-1125.	5.2	268
112	ABCA1 and ABCG1 Protect Against Oxidative Stress–Induced Macrophage Apoptosis During Efferocytosis. Circulation Research, 2010, 106, 1861-1869.	4.5	160
113	Exocytosis of acid sphingomyelinase by wounded cells promotes endocytosis and plasma membrane repair. Journal of Cell Biology, 2010, 189, 1027-1038.	5.2	301
114	The Impact of Macrophage Insulin Resistance on Advanced Atherosclerotic Plaque Progression. Circulation Research, 2010, 106, 58-67.	4.5	97
115	Pivotal role of calcium/calmodulin-dependent protein kinase II in ER stress-induced apoptosis. Cell Cycle, 2010, 9, 223-224.	2.6	25
116	The Role of Endoplasmic Reticulum Stress in the Progression of Atherosclerosis. Circulation Research, 2010, 107, 839-850.	4.5	408
117	Atherogenic Lipids and Lipoproteins Trigger CD36-TLR2-Dependent Apoptosis in Macrophages Undergoing Endoplasmic Reticulum Stress. Cell Metabolism, 2010, 12, 467-482.	16.2	397
118	Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways. Journal of Clinical Investigation, 2009, 119, 2925-2941.	8.2	367
119	Role of ERO1-α–mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress–induced apoptosis. Journal of Cell Biology, 2009, 186, 783-792.	5.2	499
120	Defective Phagocytosis of Apoptotic Cells by Macrophages in Atherosclerotic Lesions of ob/ob Mice and Reversal by a Fish Oil Diet. Circulation Research, 2009, 105, 1072-1082.	4.5	128
121	Mechanisms and consequences of macrophage apoptosis in atherosclerosis. Journal of Lipid Research, 2009, 50, S382-S387.	4.2	322
122	Brief Report: Increased Apoptosis in Advanced Atherosclerotic Lesions of <i>Apoe</i> ^{â^'/â^'} Mice Lacking Macrophage Bcl-2. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 169-172.	2.4	86
123	Free Cholesterol Accumulation in Macrophage Membranes Activates Toll-Like Receptors and p38 Mitogen-Activated Protein Kinase and Induces Cathepsin K. Circulation Research, 2009, 104, 455-465.	4.5	157
124	Adaptive suppression of the ATF4–CHOP branch of the unfolded protein response by toll-like receptor signalling. Nature Cell Biology, 2009, 11, 1473-1480.	10.3	241
125	Macrophage Apoptosis in Advanced Atherosclerosis. Annals of the New York Academy of Sciences, 2009, 1173, E40-5.	3.8	83
126	Mechanisms and consequences of efferocytosis in advanced atherosclerosis. Journal of Leukocyte Biology, 2009, 86, 1089-1095.	3.3	177

#	Article	IF	CITATIONS
127	Reduced Apoptosis and Plaque Necrosis in Advanced Atherosclerotic Lesions of Apoeâ^'/â^' and Ldlrâ^'/â^' Mice Lacking CHOP. Cell Metabolism, 2009, 9, 474-481.	16.2	303
128	Macrophage Apoptosis in Atherosclerosis: Consequences on Plaque Progression and the Role of Endoplasmic Reticulum Stress. Antioxidants and Redox Signaling, 2009, 11, 2333-2339.	5.4	147
129	Loss of SR-A and CD36 Activity Reduces Atherosclerotic Lesion Complexity Without Abrogating Foam Cell Formation in Hyperlipidemic Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 19-26.	2.4	216
130	Differential Effects of Pioglitazone on Advanced Atherosclerotic Lesions. American Journal of Pathology, 2009, 175, 1348.	3.8	2
131	Macrophage deficiency of p38î± MAPK promotes apoptosis and plaque necrosis in advanced atherosclerotic lesions in mice. Journal of Clinical Investigation, 2009, 119, 886-98.	8.2	130
132	Lipids and atherosclerosis. , 2008, , 579-605.		7
133	Extracellular Nampt Promotes Macrophage Survival via a Nonenzymatic Interleukin-6/STAT3 Signaling Mechanism. Journal of Biological Chemistry, 2008, 283, 34833-34843.	3.4	174
134	Acid Sphingomyelinase Promotes Lipoprotein Retention Within Early Atheromata and Accelerates Lesion Progression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1723-1730.	2.4	137
135	CD11c ⁺ Dendritic Cells Maintain Antigen Processing, Presentation Capabilities, and CD4 ⁺ T-Cell Priming Efficacy Under Hypercholesterolemic Conditions Associated With Atherosclerosis. Circulation Research, 2008, 103, 965-973.	4.5	93
136	Signal Transducer and Activator of Transcription-1 Is Critical for Apoptosis in Macrophages Subjected to Endoplasmic Reticulum Stress In Vitro and in Advanced Atherosclerotic Lesions In Vivo. Circulation, 2008, 117, 940-951.	1.6	128
137	Forkhead Transcription Factors (FoxOs) Promote Apoptosis of Insulin-Resistant Macrophages During Cholesterol-Induced Endoplasmic Reticulum Stress. Diabetes, 2008, 57, 2967-2976.	0.6	77
138	Mertk Receptor Mutation Reduces Efferocytosis Efficiency and Promotes Apoptotic Cell Accumulation and Plaque Necrosis in Atherosclerotic Lesions of <i>Apoe</i> ^{â^'/â^'} Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1421-1428.	2.4	300
139	Pivotal Advance: Macrophages become resistant to cholesterol-induced death after phagocytosis of apoptotic cells. Journal of Leukocyte Biology, 2007, 82, 1040-1050.	3.3	63
140	Pioglitazone Increases Macrophage Apoptosis and Plaque Necrosis in Advanced Atherosclerotic Lesions of Nondiabetic Low-Density Lipoprotein Receptor–Null Mice. Circulation, 2007, 116, 2182-2190.	1.6	50
141	A Two-Carbon Switch to Sterol-Induced Autophagic Death. Autophagy, 2007, 3, 38-41.	9.1	10
142	Attenuated Free Cholesterol Loading-induced Apoptosis but Preserved Phospholipid Composition of Peritoneal Macrophages from Mice That Do Not Express Group VIA Phospholipase A2. Journal of Biological Chemistry, 2007, 282, 27100-27114.	3.4	50
143	Subendothelial Lipoprotein Retention as the Initiating Process in Atherosclerosis. Circulation, 2007, 116, 1832-1844.	1.6	1,123
144	The inflammatory cytokine response of cholesterol-enriched macrophages is dampened by stimulated pinocytosis. Journal of Leukocyte Biology, 2007, 81, 483-491.	3.3	11

#	Article	IF	CITATIONS
145	Apoptosis and Efferocytosis in Mouse Models of Atherosclerosis. Current Drug Targets, 2007, 8, 1288-1296.	2.1	64
146	The Impact of Insulin Resistance on Macrophage Death Pathways in Advanced Atherosclerosis. Novartis Foundation Symposium, 2007, 286, 99-112.	1.1	8
147	Macrophage insulin receptor deficiency increases ER stress-induced apoptosis and necrotic core formation in advanced atherosclerotic lesions. Cell Metabolism, 2006, 3, 257-266.	16.2	256
148	Combinatorial pattern recognition receptor signaling alters the balance of life and death in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19794-19799.	7.1	162
149	Cholesterol-induced Apoptotic Macrophages Elicit an Inflammatory Response in Phagocytes, Which Is Partially Attenuated by the Mer Receptor. Journal of Biological Chemistry, 2006, 281, 6707-6717.	3.4	79
150	Plasma Sphingomyelin and Subclinical Atherosclerosis: Findings from the Multi-Ethnic Study of Atherosclerosis. American Journal of Epidemiology, 2006, 163, 903-912.	3.4	122
151	Minimally Oxidized LDL Offsets the Apoptotic Effects of Extensively Oxidized LDL and Free Cholesterol in Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1169-1176.	2.4	81
152	TNFÂ induces ABCA1 through NF-ÂB in macrophages and in phagocytes ingesting apoptotic cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3112-3117.	7.1	103
153	Sitosterol-containing Lipoproteins Trigger Free Sterol-induced Caspase-independent Death in ACAT-competent Macrophages. Journal of Biological Chemistry, 2006, 281, 33635-33649.	3.4	77
154	Decreased lipid efflux and increased susceptibility to cholesterol-induced apoptosis in macrophages lacking phosphatidylcholine transfer protein. Biochemical Journal, 2005, 388, 57-63.	3.7	16
155	Role of cholesterol and lipid organization in disease. Nature, 2005, 438, 612-621.	27.8	1,102
156	Lipoprotein Retention—and Clues for Atheroma Regression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1536-1540.	2.4	122
157	Cholesterol-induced macrophage apoptosis requires ER stress pathways and engagement of the type A scavenger receptor. Journal of Cell Biology, 2005, 171, 61-73.	5.2	311
158	Consequences and Therapeutic Implications of Macrophage Apoptosis in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 2255-2264.	2.4	587
159	Free Cholesterol-loaded Macrophages Are an Abundant Source of Tumor Necrosis Factor-α and Interleukin-6. Journal of Biological Chemistry, 2005, 280, 21763-21772.	3.4	381
160	Targeted Deletion of Hepatic CTP:phosphocholine Cytidylyltransferase α in Mice Decreases Plasma High Density and Very Low Density Lipoproteins. Journal of Biological Chemistry, 2004, 279, 47402-47410.	3.4	154
161	Enrichment of Endoplasmic Reticulum with Cholesterol Inhibits Sarcoplasmic-Endoplasmic Reticulum Calcium ATPase-2b Activity in Parallel with Increased Order of Membrane Lipids. Journal of Biological Chemistry, 2004, 279, 37030-37039.	3.4	244
162	Increased CD36 protein as a response to defective insulin signaling in macrophages. Journal of Clinical Investigation, 2004, 113, 764-773.	8.2	191

#	Article	IF	CITATIONS
163	The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nature Cell Biology, 2003, 5, 781-792.	10.3	780
164	The Cytoplasmic Domain of the Low Density Lipoprotein (LDL) Receptor-related Protein, but Not That of the LDL Receptor, Triggers Phagocytosis. Journal of Biological Chemistry, 2003, 278, 44799-44807.	3.4	27
165	Niemann-Pick C heterozygosity confers resistance to lesional necrosis and macrophage apoptosis in murine atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10423-10428.	7.1	135
166	Genetic alterations of IL-1 receptor antagonist in mice affect plasma cholesterol level and foam cell lesion size. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6280-6285.	7.1	135
167	ABCA1-mediated Cholesterol Efflux Is Defective in Free Cholesterol-loaded Macrophages. Journal of Biological Chemistry, 2002, 277, 43271-43280.	3.4	132
168	Chapter 22 Lipids and atherosclerosis. New Comprehensive Biochemistry, 2002, , 573-597.	0.1	6
169	Cholesterol in health and disease. Journal of Clinical Investigation, 2002, 110, 583-590.	8.2	140
170	Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. Journal of Clinical Investigation, 2002, 110, 905-911.	8.2	485
171	Cholesterol in health and disease. Journal of Clinical Investigation, 2002, 110, 583-590.	8.2	76
172	Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. Journal of Clinical Investigation, 2002, 110, 905-911.	8.2	319
173	In search of a starting point. Current Opinion in Lipidology, 2001, 12, 475-476.	2.7	3
174	The Uptake and Degradation of Matrix-bound Lipoproteins by Macrophages Require an Intact Actin Cytoskeleton, Rho Family GTPases, and Myosin ATPase Activity. Journal of Biological Chemistry, 2001, 276, 37649-37658.	3.4	54
175	Acid Sphingomyelinase-deficient Macrophages Have Defective Cholesterol Trafficking and Efflux. Journal of Biological Chemistry, 2001, 276, 44976-44983.	3.4	107
176	Preferential ATP-binding Cassette Transporter A1-mediated Cholesterol Efflux from Late Endosomes/Lysosomes. Journal of Biological Chemistry, 2001, 276, 43564-43569.	3.4	154
177	Free Cholesterol Loading of Macrophages Is Associated with Widespread Mitochondrial Dysfunction and Activation of the Mitochondrial Apoptosis Pathway. Journal of Biological Chemistry, 2001, 276, 42468-42476.	3.4	169
178	p53 and Atherosclerosis. Circulation Research, 2001, 88, 747-749.	4.5	51
179	In search of an endpoint. Current Opinion in Lipidology, 2000, 11, 447-450.	2.7	2
180	Macrophages Deficient in CTP:Phosphocholine Cytidylyltransferase-α Are Viable under Normal Culture Conditions but Are Highly Susceptible to Free Cholesterol-induced Death. Journal of Biological Chemistry, 2000, 275, 35368-35376.	3.4	59

#	Article	IF	CITATIONS
181	Sphingomyelinase Converts Lipoproteins From Apolipoprotein E Knockout Mice Into Potent Inducers of Macrophage Foam Cell Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 2607-2613.	2.4	54
182	Free Cholesterol Loading of Macrophages Induces Apoptosis Involving the Fas Pathway. Journal of Biological Chemistry, 2000, 275, 23807-23813.	3.4	163
183	Sphingomyelinase, an Enzyme Implicated in Atherogenesis, Is Present in Atherosclerotic Lesions and Binds to Specific Components of the Subendothelial Extracellular Matrix. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 2648-2658.	2.4	115
184	NONOXIDATIVE MODIFICATIONS OF LIPOPROTEINS IN ATHEROGENESIS. Annual Review of Nutrition, 1999, 19, 123-139.	10.1	125
185	Secretory sphingomyelinase. Chemistry and Physics of Lipids, 1999, 102, 123-130.	3.2	107
186	Cholesterol Distribution in Living Cells: Fluorescence Imaging Using Dehydroergosterol as a Fluorescent Cholesterol Analog. Biophysical Journal, 1998, 75, 1915-1925.	0.5	311
187	The Cellular Trafficking and Zinc Dependence of Secretory and Lysosomal Sphingomyelinase, Two Products of the Acid Sphingomyelinase Gene. Journal of Biological Chemistry, 1998, 273, 18250-18259.	3.4	219
188	Secretory Sphingomyelinase, a Product of the Acid Sphingomyelinase Gene, Can Hydrolyze Atherogenic Lipoproteins at Neutral pH. Journal of Biological Chemistry, 1998, 273, 2738-2746.	3.4	291
189	Human Vascular Endothelial Cells Are a Rich and Regulatable Source of Secretory Sphingomyelinase. Journal of Biological Chemistry, 1998, 273, 4081-4088.	3.4	236
190	Sphingomyelinase Treatment Induces ATP-independent Endocytosis. Journal of Cell Biology, 1998, 140, 39-47.	5.2	196
191	The responseâ€ŧoâ€ŧetention hypothesis of atherogenesis reinforced. Current Opinion in Lipidology, 1998, 9, 471-474.	2.7	310
192	Evidence for Prolonged Cell-Surface Contact of Acetyl-LDL Before Entry Into Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 1421-1431.	2.4	17
193	Free Cholesterol-Induced Cytotoxicity. Trends in Cardiovascular Medicine, 1997, 7, 256-263.	4.9	76
194	Zn2+-stimulated Sphingomyelinase Is Secreted by Many Cell Types and Is a Product of the Acid Sphingomyelinase Gene. Journal of Biological Chemistry, 1996, 271, 18431-18436.	3.4	257
195	Interleukin 8 Is Induced by Cholesterol Loading of Macrophages and Expressed by Macrophage Foam Cells in Human Atheroma. Journal of Biological Chemistry, 1996, 271, 8837-8842.	3.4	221
196	Evidence That the Initial Up-regulation of Phosphatidylcholine Biosynthesis in Free Cholesterol-loaded Macrophages Is an Adaptive Response That Prevents Cholesterol-induced Cellular Necrosis. Journal of Biological Chemistry, 1996, 271, 22773-22781.	3.4	93
197	The stimulation of the cholesterol esterification pathway by atherogenic lipoproteins in macrophages. Current Opinion in Lipidology, 1995, 6, 260-268.	2.7	52
198	The Response-to-Retention Hypothesis of Early Atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 1995, 15, 551-561.	2.4	1,202

#	Article	IF	CITATIONS
199	Cellular Cholesterol Metabolism in Health and Disease. , 1992, , 414-431.		0