## Maria Cristina Menziani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8822152/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Biasing crystallization in fused silica: An assessment of optimal metadynamics parameters. Journal of<br>Chemical Physics, 2022, 156, .                                                                            | 1.2 | 3         |
| 2  | Novel Petâ€Degrading Enzymes: Structureâ€Function from a Computational Perspective. ChemBioChem, 2021, 22, 2032-2050.                                                                                              | 1.3 | 16        |
| 3  | Improved empirical force field for multicomponent oxide glasses and crystals. Physical Review Materials, 2021, 5, .                                                                                                | 0.9 | 12        |
| 4  | Development and Application of a ReaxFF Reactive Force Field for Cerium Oxide/Water Interfaces.<br>Journal of Physical Chemistry A, 2021, 125, 5693-5708.                                                          | 1.1 | 8         |
| 5  | Exploring the crystallization path of lithium disilicate through metadynamics simulations. Physical Review Materials, 2021, 5, .                                                                                   | 0.9 | 8         |
| 6  | Toward the understanding of crystallization, mechanical properties and reactivity of multicomponent bioactive glasses. Acta Materialia, 2021, 213, 116977.                                                         | 3.8 | 14        |
| 7  | Exploring Translocator Protein (TSPO) Medicinal Chemistry: An Approach for Targeting Radionuclides and Boron Atoms to Mitochondria. Journal of Medicinal Chemistry, 2021, 64, 9649-9676.                           | 2.9 | 2         |
| 8  | Computational Insight on the Interaction of Common Blood Proteins with Gold Nanoparticles.<br>International Journal of Molecular Sciences, 2021, 22, 8722.                                                         | 1.8 | 4         |
| 9  | Disclosing the Interaction of Gold Nanoparticles with Aβ(1–40) Monomers through Replica Exchange<br>Molecular Dynamics Simulations. International Journal of Molecular Sciences, 2021, 22, 26.                     | 1.8 | 21        |
| 10 | O <sub>2</sub> Activation over Ag-Decorated CeO <sub>2</sub> (111) and TiO <sub>2</sub> (110)<br>Surfaces: A Theoretical Comparative Investigation. Journal of Physical Chemistry C, 2020, 124,<br>25917-25930.    | 1.5 | 19        |
| 11 | Insights into the Effect of Curcumin and (–)-Epigallocatechin-3-Gallate on the Aggregation of Aβ(1–40)<br>Monomers by Means of Molecular Dynamics. International Journal of Molecular Sciences, 2020, 21,<br>5462. | 1.8 | 18        |
| 12 | Disclosing crystal nucleation mechanism in lithium disilicate glass through molecular dynamics simulations and free-energy calculations. Scientific Reports, 2020, 10, 17867.                                      | 1.6 | 18        |
| 13 | Computational Insights into the Binding of Monolayer-Capped Gold Nanoparticles onto Amyloid-β<br>Fibrils. ACS Chemical Neuroscience, 2020, 11, 3153-3160.                                                          | 1.7 | 22        |
| 14 | Structural origins of the Mixed Alkali Effect in Alkali Aluminosilicate Glasses: Molecular Dynamics<br>Study and its Assessment. Scientific Reports, 2020, 10, 2906.                                               | 1.6 | 36        |
| 15 | Unraveling the complexity of amyloid polymorphism using gold nanoparticles and cryo-EM.<br>Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6866-6874.                  | 3.3 | 54        |
| 16 | Multiscale Molecular Dynamics Simulation of Multiple Protein Adsorption on Gold Nanoparticles.<br>International Journal of Molecular Sciences, 2019, 20, 3539.                                                     | 1.8 | 36        |
| 17 | DARPin_9-29-Targeted Mini Gold Nanorods Specifically Eliminate HER2-Overexpressing Cancer Cells.<br>ACS Applied Materials & Interfaces, 2019, 11, 34645-34651.                                                     | 4.0 | 18        |
| 18 | H <sub>2</sub> Dissociation and Water Evolution on Silver-Decorated CeO <sub>2</sub> (111): A Hybrid Density Functional Theory Investigation. Journal of Physical Chemistry C, 2019, 123, 25668-25679.             | 1.5 | 9         |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A DFT Approach to the Surface-Enhanced Raman Scattering of 4-Cyanopyridine Adsorbed on Silver<br>Nanoparticles. Nanomaterials, 2019, 9, 1211.                                                                          | 1.9 | 33        |
| 20 | Reducibility of Ag- and Cu-Modified Ultrathin Epitaxial Cerium Oxide Films. Journal of Physical<br>Chemistry C, 2019, 123, 13702-13711.                                                                                | 1.5 | 6         |
| 21 | Nanoreactors for the multi-functionalization of poly-histidine fragments. New Journal of Chemistry, 2019, 43, 6834-6837.                                                                                               | 1.4 | 8         |
| 22 | Functionalization of protein hexahistidine tags by functional nanoreactors. New Journal of Chemistry, 2019, 43, 17946-17953.                                                                                           | 1.4 | 3         |
| 23 | An atomic-level look at the structure-property relationship of cerium-doped glasses using classical molecular dynamics. Journal of Non-Crystalline Solids, 2018, 498, 331-337.                                         | 1.5 | 9         |
| 24 | Computational Insight into the Effect of Natural Compounds on the Destabilization of Preformed Amyloid-β(1–40) Fibrils. Molecules, 2018, 23, 1320.                                                                     | 1.7 | 28        |
| 25 | Curcumin derivatives and Aβ-fibrillar aggregates: An interactions' study for diagnostic/therapeutic<br>purposes in neurodegenerative diseases. Bioorganic and Medicinal Chemistry, 2018, 26, 4288-4300.                | 1.4 | 29        |
| 26 | Assessment of Density Functional Approximations for Highly Correlated Oxides: The Case of<br>CeO <sub>2</sub> and Ce <sub>2</sub> O <sub>3</sub> . Journal of Chemical Theory and Computation,<br>2018, 14, 4914-4927. | 2.3 | 27        |
| 27 | Understanding Aggregation-Induced Emission in Molecular Crystals: Insights from Theory. Journal of<br>Physical Chemistry C, 2017, 121, 5747-5752.                                                                      | 1.5 | 52        |
| 28 | Site-Selective Surface-Enhanced Raman Detection of Proteins. ACS Nano, 2017, 11, 918-926.                                                                                                                              | 7.3 | 85        |
| 29 | Computational Insight into the Interaction of Cytochrome C with Wet and PVP-Coated Ag Surfaces.<br>Journal of Physical Chemistry B, 2017, 121, 9532-9540.                                                              | 1.2 | 18        |
| 30 | Structure of active cerium sites within bioactive glasses. Journal of the American Ceramic Society, 2017, 100, 5086-5095.                                                                                              | 1.9 | 16        |
| 31 | Synthesis, Characterization, and Selective Delivery of DARPin–Gold Nanoparticle Conjugates to<br>Cancer Cells. Bioconjugate Chemistry, 2017, 28, 2569-2574.                                                            | 1.8 | 37        |
| 32 | Modeling emission features of salicylidene aniline molecular crystals: A QM/QM' approach. Journal of<br>Computational Chemistry, 2016, 37, 861-870.                                                                    | 1.5 | 26        |
| 33 | What Can We Learn from Atomistic Simulations of Bioactive Glasses?. Advanced Structured Materials, 2016, , 119-145.                                                                                                    | 0.3 | 2         |
| 34 | Optical properties of the dibenzothiazolylphenol molecular crystals through ONIOM calculations:<br>the effect of the electrostatic embedding scheme. Theoretical Chemistry Accounts, 2016, 135, 1.                     | 0.5 | 14        |
| 35 | Assessment of the basis set effect on the structural and electronic properties of organic-protected gold nanoclusters. Theoretical Chemistry Accounts, 2016, 135, 1.                                                   | 0.5 | 6         |
| 36 | Phenylindenone isomers as divergent modulators of p38α MAP kinase. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5160-5163.                                                                                    | 1.0 | 3         |

| #  | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The antioxidant properties of Ce-containing bioactive glass nanoparticles explained by Molecular<br>Dynamics simulations. Biomedical Glasses, 2016, 2, .                                                                                                 | 2.4 | 9         |
| 38 | The effect of composition on structural, thermal, redox and bioactive properties of Ce-containing glasses. Materials and Design, 2016, 97, 73-85.                                                                                                        | 3.3 | 43        |
| 39 | Electronic and optical properties of the Au22[1,8-bis(diphenylphosphino) octane]6 nanoclusters disclosed by DFT and TD-DFT calculations. Theoretical Chemistry Accounts, 2016, 135, 1.                                                                   | 0.5 | 12        |
| 40 | Calcium environment in silicate and aluminosilicate glasses probed by 43Ca MQMAS NMR experiments and MD-GIPAW calculations. Solid State Nuclear Magnetic Resonance, 2015, 68-69, 31-36.                                                                  | 1.5 | 37        |
| 41 | Evidence of Catalase Mimetic Activity in Ce <sup>3+</sup> /Ce <sup>4+</sup> Doped Bioactive Glasses.<br>Journal of Physical Chemistry B, 2015, 119, 4009-4019.                                                                                           | 1.2 | 119       |
| 42 | Computational Modeling of Silicate Glasses: A Quantitative Structure-Property Relationship<br>Perspective. Springer Series in Materials Science, 2015, , 113-135.                                                                                        | 0.4 | 15        |
| 43 | Influence of Silver Doping on the Photoluminescence of Protected<br>Ag <sub><i>n</i></sub> Au <sub>25–<i>n</i></sub> Nanoclusters: A Time-Dependent Density Functional<br>Theory Investigation. Journal of Physical Chemistry C, 2015, 119, 10766-10775. | 1.5 | 40        |
| 44 | Competitive Binding of Proteins to Gold Nanoparticles Disclosed by Molecular Dynamics Simulations.<br>Journal of Physical Chemistry C, 2015, 119, 22172-22180.                                                                                           | 1.5 | 76        |
| 45 | Dynamics of Fracture in Silica and Soda-Silicate Glasses: From Bulk Materials to Nanowires. Journal of Physical Chemistry C, 2015, 119, 25499-25507.                                                                                                     | 1.5 | 25        |
| 46 | A closer look into the ubiquitin corona on gold nanoparticles by computational studies. New Journal of Chemistry, 2015, 39, 2474-2482.                                                                                                                   | 1.4 | 49        |
| 47 | DFT and TD-DFT Assessment of the Structural and Optoelectronic Properties of an<br>Organic–Ag <sub>14</sub> Nanocluster. Journal of Physical Chemistry A, 2015, 119, 5088-5098.                                                                          | 1.1 | 31        |
| 48 | Computational Protocol for Modeling Thermochromic Molecular Crystals: Salicylidene Aniline As a<br>Case Study. Journal of Chemical Theory and Computation, 2014, 10, 5577-5585.                                                                          | 2.3 | 44        |
| 49 | Arylsulfonyl Groups: The Best Cyclization Auxiliaries for the Preparation of ATRC Î³â€Łactams can be<br>Acidolytically Removed. European Journal of Organic Chemistry, 2014, 2014, 6734-6745.                                                            | 1.2 | 15        |
| 50 | Dendrimeric tetravalent ligands for the serotonin-gated ion channel. Chemical Communications, 2014, 50, 8582.                                                                                                                                            | 2.2 | 16        |
| 51 | Oxalyl dihydrazide polymorphism: a periodic dispersion-corrected DFT and MP2 investigation.<br>CrystEngComm, 2014, 16, 102-109.                                                                                                                          | 1.3 | 23        |
| 52 | Unraveling the Polymorphism of [( <i>p</i> -cymene)Ru(κN-INA)Cl <sub>2</sub> ] through<br>Dispersion-Corrected DFT and NMR GIPAW Calculations. Inorganic Chemistry, 2014, 53, 7926-7935.                                                                 | 1.9 | 11        |
| 53 | Assessment of Exchange-Correlation Functionals in Reproducing the Structure and Optical Gap of Organic-Protected Gold Nanoclusters. Journal of Physical Chemistry C, 2014, 118, 7532-7544.                                                               | 1.5 | 51        |
| 54 | On the opto-electronic properties of phosphine and thiolate-protected undecagold nanoclusters.<br>Physical Chemistry Chemical Physics, 2014, 16, 18749-18758.                                                                                            | 1.3 | 19        |

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Computational interpretation of 23Na MQMAS NMR spectra: A comprehensive investigation of the Na environment in silicate glasses. Chemical Physics Letters, 2014, 612, 56-61.                                                 | 1.2 | 34        |
| 56 | Synthesis and structure–activity relationship studies in serotonin 5-HT4 receptor ligands based on a benzo[de][2,6]naphthridine scaffold. European Journal of Medicinal Chemistry, 2014, 82, 36-46.                          | 2.6 | 15        |
| 57 | Probing silicon and aluminium chemical environments in silicate and aluminosilicate glasses by solid state NMR spectroscopy and accurate first-principles calculations. Geochimica Et Cosmochimica Acta, 2014, 125, 170-185. | 1.6 | 72        |
| 58 | Approaching the 5-HT3 receptor heterogeneity by computational studies of the transmembrane and intracellular domains. Journal of Computer-Aided Molecular Design, 2013, 27, 491-509.                                         | 1.3 | 0         |
| 59 | Study of the Structural Role of Gallium and Aluminum in 45S5 Bioactive Glasses by Molecular<br>Dynamics Simulations. Journal of Physical Chemistry B, 2013, 117, 4142-4150.                                                  | 1.2 | 68        |
| 60 | New insights into the bioactivity of SiO2–CaO and SiO2–CaO–P2O5 sol–gel glasses by molecular<br>dynamics simulations. Journal of Sol-Gel Science and Technology, 2013, 67, 208-219.                                          | 1.1 | 18        |
| 61 | Local versus Average Structure in LaSrAl <sub>3</sub> O <sub>7</sub> : A NMR and DFT Investigation.<br>Journal of Physical Chemistry C, 2013, 117, 23451-23458.                                                              | 1.5 | 20        |
| 62 | Exploring a potential palonosetron allosteric binding site in the 5-HT3 receptor. Bioorganic and Medicinal Chemistry, 2013, 21, 7523-7528.                                                                                   | 1.4 | 14        |
| 63 | Computational simulations of solid state NMR spectra: a new era in structure determination of oxide glasses. RSC Advances, 2013, 3, 10550.                                                                                   | 1.7 | 81        |
| 64 | Novel route to chaetomellic acid A and analogues: Serendipitous discovery of a more competent FTase inhibitor. Bioorganic and Medicinal Chemistry, 2013, 21, 348-358.                                                        | 1.4 | 8         |
| 65 | First-principles simulations of the 27Al and 17O solid-state NMR spectra of the CaAl2Si3O10 glass.<br>Highlights in Theoretical Chemistry, 2013, , 87-97.                                                                    | 0.0 | 0         |
| 66 | A first step towards the understanding of the 5-HT3 receptor subunit heterogeneity from a computational point of view. Physical Chemistry Chemical Physics, 2012, 14, 12625.                                                 | 1.3 | 6         |
| 67 | Unambiguous Description of the Oxygen Environment in Multicomponent Aluminosilicate Glasses<br>from <sup>17</sup> 0 Solid State NMR Computational Spectroscopy. Journal of Physical Chemistry C,<br>2012, 116, 14599-14609.  | 1.5 | 59        |
| 68 | The structure of fluoride-containing bioactive glasses: new insights from first-principles calculations and solid state NMR spectroscopy. Journal of Materials Chemistry, 2012, 22, 12599.                                   | 6.7 | 88        |
| 69 | The extracellular subunit interface of the 5-HT <sub>3</sub> receptors: a computational alanine scanning mutagenesis study. Journal of Biomolecular Structure and Dynamics, 2012, 30, 280-298.                               | 2.0 | 6         |
| 70 | On the ability of periodic dispersion-corrected DFT calculations to predict molecular crystal polymorphism in para-diiodobenzene. Chemical Physics Letters, 2012, 541, 12-15.                                                | 1.2 | 18        |
| 71 | Computational Insights into ADAMTS4, ADAMTS5 and MMP13 Inhibitor Selectivity. Molecular Informatics, 2012, 31, 421-430.                                                                                                      | 1.4 | 2         |
| 72 | First-principles simulations of the 27Al and 17O solid-state NMR spectra of the CaAl2Si3O10 glass.<br>Theoretical Chemistry Accounts, 2012, 131, 1.                                                                          | 0.5 | 34        |

| #  | Article                                                                                                                                                                                                                                                                                                                                    | IF              | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|
| 73 | Modeling the Binding Affinity of p38α MAP Kinase Inhibitors by Partial Least Squares Regression.<br>Chemical Biology and Drug Design, 2012, 80, 455-470.                                                                                                                                                                                   | 1.5             | 1         |
| 74 | Bivalent Ligands for the Serotonin 5-HT <sub>3</sub> Receptor. ACS Medicinal Chemistry Letters, 2011, 2, 571-576.                                                                                                                                                                                                                          | 1.3             | 14        |
| 75 | Fluorine Environment in Bioactive Classes: <i>ab Initio</i> Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2011, 115, 2038-2045.                                                                                                                                                                                         | 1.2             | 79        |
| 76 | Insights into MAPK <mml:math <br="" altimg="si44.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"&gt;<mml:mrow><mml:mtext>p</mml:mtext><mml:mn>38</mml:mn><mml:mi>î±</mml:mi>DFG flip mechanism by accelerated molecular dynamics. Bioorganic and Medicinal Chemistry, 2010, 18,<br/>6805-6812.</mml:mrow></mml:math> | nml:mrow<br>1.4 | >         |
| 77 | Computational analysis of ligand recognition sites of homo- and heteropentameric 5-HT3 receptors.<br>European Journal of Medicinal Chemistry, 2010, 45, 4746-4760.                                                                                                                                                                         | 2.6             | 14        |
| 78 | New Insights into the Atomic Structure of 45S5 Bioglass by Means of Solid-State NMR Spectroscopy and Accurate First-Principles Simulations. Chemistry of Materials, 2010, 22, 5644-5652.                                                                                                                                                   | 3.2             | 131       |
| 79 | Molecular dynamics simulations of sodium silicate glasses: Optimization and limits of the computational procedure. Computational Materials Science, 2010, 47, 739-751.                                                                                                                                                                     | 1.4             | 26        |
| 80 | Multinuclear NMR of CaSiO3 glass: simulation from first-principles. Physical Chemistry Chemical Physics, 2010, 12, 6054.                                                                                                                                                                                                                   | 1.3             | 71        |
| 81 | Extension of the AMBER force-field for the study of large nitroxides in condensed phases: an ab initio parameterization. Physical Chemistry Chemical Physics, 2010, 12, 11697.                                                                                                                                                             | 1.3             | 74        |
| 82 | Progress Towards the Identification of New Aggrecanase Inhibitors. Current Medicinal Chemistry, 2009, 16, 2395-2415.                                                                                                                                                                                                                       | 1.2             | 22        |
| 83 | Quantitative Structureâ^'Property Relationships of Potentially Bioactive Fluoro Phospho-silicate<br>Glasses. Journal of Physical Chemistry B, 2009, 113, 10331-10338.                                                                                                                                                                      | 1.2             | 80        |
| 84 | Computational Insight into the Effect of CaO/MgO Substitution on the Structural Properties of Phospho-Silicate Bioactive Glasses. Journal of Physical Chemistry C, 2009, 113, 15723-15730.                                                                                                                                                 | 1.5             | 99        |
| 85 | Elastic and dynamical properties of alkali-silicate glasses from computer simulations techniques.<br>Theoretical Chemistry Accounts, 2008, 120, 557-564.                                                                                                                                                                                   | 0.5             | 44        |
| 86 | Role of Magnesium in Soda-Lime Glasses: Insight into Structural, Transport, and Mechanical<br>Properties through Computer Simulations. Journal of Physical Chemistry C, 2008, 112, 11034-11041.                                                                                                                                            | 1.5             | 89        |
| 87 | Accurate First-Principle Prediction of <sup>29</sup> Si and <sup>17</sup> O NMR Parameters in<br>SiO <sub>2</sub> Polymorphs: The Cases of Zeolites Sigma-2 and Ferrierite. Journal of Chemical Theory<br>and Computation, 2008, 4, 2130-2140.                                                                                             | 2.3             | 27        |
| 88 | FFSiOH: a New Force Field for Silica Polymorphs and Their Hydroxylated Surfaces Based on Periodic B3LYP Calculations. Chemistry of Materials, 2008, 20, 2522-2531.                                                                                                                                                                         | 3.2             | 68        |
| 89 | Molecular Dynamics Studies of Stressâ^'Strain Behavior of Silica Glass under a Tensile Load. Chemistry of Materials, 2008, 20, 4356-4366.                                                                                                                                                                                                  | 3.2             | 121       |
| 90 | Medium-range order in phospho-silicate bioactive glasses: Insights from MAS-NMR spectra, chemical durability experiments and molecular dynamics simulations. Journal of Non-Crystalline Solids, 2008, 354, 84-89.                                                                                                                          | 1.5             | 54        |

| #   | Article                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Elucidation of the Structural Role of Fluorine in Potentially Bioactive Glasses by Experimental and Computational Investigation. Journal of Physical Chemistry B, 2008, 112, 12730-12739.                                                                                   | 1.2 | 107       |
| 92  | Properties of Zinc Releasing Surfaces for Clinical Applications. Journal of Biomaterials Applications, 2008, 22, 505-526.                                                                                                                                                   | 1.2 | 52        |
| 93  | A Combined Experimental-Computational Strategy for the Design, Synthesis and Characterization of Bioactive Zinc-Silicate Glasses. Key Engineering Materials, 2008, 377, 211-224.                                                                                            | 0.4 | 3         |
| 94  | An ab initio parameterized interatomic force field for hydroxyapatite. Journal of Materials Chemistry, 2007, 17, 2061.                                                                                                                                                      | 6.7 | 32        |
| 95  | Insight into Elastic Properties of Binary Alkali Silicate Glasses; Prediction and Interpretation through<br>Atomistic Simulation Techniques. Chemistry of Materials, 2007, 19, 3144-3154.                                                                                   | 3.2 | 125       |
| 96  | Crystallization Kinetics of Bioactive Glasses in the ZnOâ^'Na <sub>2</sub> Oâ^'CaOâ^'SiO <sub>2</sub><br>System. Journal of Physical Chemistry A, 2007, 111, 8401-8408.                                                                                                     | 1.1 | 20        |
| 97  | A computational multiscale strategy to the study of amorphous materials. Theoretical Chemistry Accounts, 2007, 117, 933-942.                                                                                                                                                | 0.5 | 32        |
| 98  | Density of multicomponent silica-based potential bioglasses: Quantitative structure-property relationships (QSPR) analysis. Journal of the European Ceramic Society, 2007, 27, 499-504.                                                                                     | 2.8 | 14        |
| 99  | A New Self-Consistent Empirical Interatomic Potential Model for Oxides, Silicates, and Silica-Based<br>Glasses. Journal of Physical Chemistry B, 2006, 110, 11780-11795.                                                                                                    | 1.2 | 471       |
| 100 | Towards a quantitative rationalization of multicomponent glass properties by means of molecular dynamics simulations. Molecular Simulation, 2006, 32, 1045-1055.                                                                                                            | 0.9 | 20        |
| 101 | Void size distribution in MD-modelled silica glass structures. Journal of Non-Crystalline Solids, 2006, 352, 285-296.                                                                                                                                                       | 1.5 | 70        |
| 102 | Molecular Interactions Between Human Cytochrome P450 1A2 and Flavone Derivatives. Medicinal Chemistry, 2006, 2, 401-406.                                                                                                                                                    | 0.7 | 0         |
| 103 | Theoretical quantitative structure–activity relationships of flavone ligands interacting with cytochrome P450 1A1 and 1A2 isozymes. Bioorganic and Medicinal Chemistry, 2005, 13, 4366-4374.                                                                                | 1.4 | 39        |
| 104 | A Computational Tool for the Prediction of Crystalline Phases Obtained from Controlled Crystallization of Glasses. Journal of Physical Chemistry B, 2005, 109, 21586-21592.                                                                                                 | 1.2 | 32        |
| 105 | A computational protocol to probe the role of solvation effects on the reduction potential of azurin mutants. Proteins: Structure, Function and Bioinformatics, 2005, 62, 262-269.                                                                                          | 1.5 | 10        |
| 106 | Qualitative and Quantitative Structureâ~ Property Relationships Analysis of Multicomponent Potential<br>Bioglasses. Journal of Physical Chemistry B, 2005, 109, 4989-4998.                                                                                                  | 1.2 | 98        |
| 107 | Further Studies on the Interaction of the 5-Hydroxytryptamine3(5-HT3) Receptor with Arylpiperazine<br>Ligands. Development of a New 5-HT3Receptor Ligand Showing Potent Acetylcholinesterase Inhibitory<br>Properties. Journal of Medicinal Chemistry, 2005, 48, 3564-3575. | 2.9 | 64        |
| 108 | Computational Insight into Anti-mutagenic Properties of CYP1A Flavonoid Ligands. Medicinal Chemistry, 2005, 1, 355-360.                                                                                                                                                     | 0.7 | 0         |

| #   | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Computational approaches to structural and functional analysis of plastocyanin and other blue copper proteins. Cellular and Molecular Life Sciences, 2004, 61, 1123-1142.                                                                                      | 2.4 | 24        |
| 110 | A combined experimental and computational approach to (Na2O)1â^'x·CaO·(ZnO)x·2SiO2 glasses<br>characterization. Journal of Non-Crystalline Solids, 2004, 345-346, 710-714.                                                                                     | 1.5 | 22        |
| 111 | Design, Synthesis, Structural Studies, Biological Evaluation, and Computational Simulations of Novel<br>Potent AT1Angiotensin II Receptor Antagonists Based on the 4-Phenylquinoline Structure. Journal of<br>Medicinal Chemistry, 2004, 47, 2574-2586.        | 2.9 | 75        |
| 112 | Seeking for binding determinants of the prion protein to human plasminogen. Molecular Physics, 2003, 101, 2763-2773.                                                                                                                                           | 0.8 | 1         |
| 113 | Development of an IL-6 antagonist peptide that induces apoptosis in 7TD1 cells. Peptides, 2003, 24, 1207-1220.                                                                                                                                                 | 1.2 | 14        |
| 114 | Synthesis, Biological Evaluation, and Receptor Docking Simulations of<br>2-[(Acylamino)ethyl]-1,4-benzodiazepines as κ-Opioid Receptor Agonists Endowed with Antinociceptive<br>and Antiamnesic Activity. Journal of Medicinal Chemistry, 2003, 46, 3853-3864. | 2.9 | 32        |
| 115 | Modelling the metabolic action of human and rat CYP1A2 and its relationship with the carcinogenicity of heterocyclic amines. Molecular Physics, 2003, 101, 2731-2741.                                                                                          | 0.8 | 4         |
| 116 | Experimental Versus Computer Simulation Analysis of Zirconia Containing Glasses. Key Engineering Materials, 2002, 206-213, 2101-2104.                                                                                                                          | 0.4 | 0         |
| 117 | Synthesis, Characterization, and Molecular Dynamics Simulation Of Na2Oâ^'CaOâ^'SiO2â^'ZnO Glasses.<br>Journal of Physical Chemistry B, 2002, 106, 9753-9760.                                                                                                   | 1.2 | 76        |
| 118 | Novel Potent 5-HT3 Receptor Ligands Based on the Pyrrolidone Structure: Synthesis, Biological<br>Evaluation, and Computational Rationalization of the Ligand–Receptor Interaction Modalities.<br>Bioorganic and Medicinal Chemistry, 2002, 10, 779-801.        | 1.4 | 36        |
| 119 | Novel potent 5-HT3 receptor ligands based on the pyrrolidone structure. effects of the quaternization of the basic nitrogen on the interaction with 5-HT3 receptor. Bioorganic and Medicinal Chemistry, 2002, 10, 2681-2691.                                   | 1.4 | 9         |
| 120 | Theoretical descriptors for the quantitative rationalisation of plastocyanin mutant functional propertiess. Journal of Computer-Aided Molecular Design, 2002, 16, 501-509.                                                                                     | 1.3 | 3         |
| 121 | Mapping and Fitting the Peripheral Benzodiazepine Receptor Binding Site by Carboxamide Derivatives.<br>Comparison of Different Approaches to Quantitative Ligandâ^'Receptor Interaction Modeling. Journal<br>of Medicinal Chemistry, 2001, 44, 1134-1150.      | 2.9 | 68        |
| 122 | Electrostatic Analysis and Brownian Dynamics Simulation of the Association of Plastocyanin and Cytochrome F. Biophysical Journal, 2001, 81, 3090-3104.                                                                                                         | 0.2 | 80        |
| 123 | Influence of Small Additions of Al2O3 on the Properties of the Na2O·3SiO2 Glass. Journal of Physical Chemistry B, 2001, 105, 919-927.                                                                                                                          | 1.2 | 25        |
| 124 | Control of Metalloprotein Reduction Potential:Â The Role of Electrostatic and Solvation Effects<br>Probed on Plastocyanin Mutantsâ€. Biochemistry, 2001, 40, 6422-6430.                                                                                        | 1.2 | 44        |
| 125 | A computational model of the 5-HT 3 receptor extracellular domain: search for ligand binding sites.<br>Theoretical Chemistry Accounts, 2001, 106, 98-104.                                                                                                      | 0.5 | 14        |
| 126 | Title is missing!. Journal of Solution Chemistry, 2001, 30, 149-169.                                                                                                                                                                                           | 0.6 | 8         |

| #   | Article                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | The ad hoc supermolecule approach to receptor ligand design. Computational and Theoretical Chemistry, 2000, 503, 1-16.                                                                                                                                                                     | 1.5 | 7         |
| 128 | Theoretical investigation of substrate specificity for cytochromes P450 IA2, P450 IID6 and P450 IIIA4.<br>Journal of Computer-Aided Molecular Design, 2000, 14, 93-116.                                                                                                                    | 1.3 | 59        |
| 129 | Blue copper proteins: A comparative analysis of their molecular interaction properties. Protein Science, 2000, 9, 1439-1454.                                                                                                                                                               | 3.1 | 109       |
| 130 | Molecular Dynamics Simulations of Alumina Addition in Sodium Silicate Glasses. Molecular Simulation, 2000, 24, 157-165.                                                                                                                                                                    | 0.9 | 16        |
| 131 | Relevance of theoretical molecular descriptors in quantitative structure–activity relationship<br>analysis of α1-adrenergic receptor antagonists. Bioorganic and Medicinal Chemistry, 1999, 7, 2437-2451.                                                                                  | 1.4 | 23        |
| 132 | Field experiments to study evaporation from a saturated bare soil. Physics and Chemistry of the Earth, 1999, 24, 813-818.                                                                                                                                                                  | 0.3 | 11        |
| 133 | Theoretical study of the electrostatically driven step of receptor-G protein recognition. , 1999, 37, 145-156.                                                                                                                                                                             |     | 31        |
| 134 | Synthesis, Pharmacological Evaluation, and Structureâ^'Activity Relationship and Quantitative<br>Structureâ^'Activity Relationship Studies on Novel Derivatives of 2,4-Diamino-6,7-dimethoxyquinazoline<br>α1-Adrenoceptor Antagonists. Journal of Medicinal Chemistry, 1999, 42, 427-437. | 2.9 | 20        |
| 135 | Novel Potent and Selective Central 5-HT3Receptor Ligands Provided with Different Intrinsic Efficacy. 2.<br>Molecular Basis of the Intrinsic Efficacy of Arylpiperazine Derivatives at the Central 5-HT3Receptors.<br>Journal of Medicinal Chemistry, 1999, 42, 1556-1575.                  | 2.9 | 37        |
| 136 | Theoretical descriptors in quantitative structure–affinity and selectivity relationship study of<br>potent N4-substituted arylpiperazine 5-HT1A receptor antagonists. Bioorganic and Medicinal Chemistry,<br>1998, 6, 535-550.                                                             | 1.4 | 20        |
| 137 | Computer Modeling of Size and Shape Descriptors of α1-Adrenergic Receptor Antagonists and<br>Quantitative Structure–Affinity/Selectivity Relationships. Methods, 1998, 14, 239-254.                                                                                                        | 1.9 | 14        |
| 138 | Ab InitioModeling and Molecular Dynamics Simulation of the α1b-Adrenergic Receptor Activation.<br>Methods, 1998, 14, 302-317.                                                                                                                                                              | 1.9 | 38        |
| 139 | Novel Potent and Selective Central 5-HT3Receptor Ligands Provided with Different Intrinsic Efficacy. 1.<br>Mapping the Central 5-HT3Receptor Binding Site by Arylpiperazine Derivatives. Journal of Medicinal<br>Chemistry, 1998, 41, 728-741.                                             | 2.9 | 73        |
| 140 | Conformational analysis and theoretical quantitative size and shape-affinity relationships of<br>N4-protonated N1-arylpiperazine 5-HT1A serotoninergic ligands. Computational and Theoretical<br>Chemistry, 1997, 397, 129-145.                                                            | 1.5 | 11        |
| 141 | Mapping the Peripheral Benzodiazepine Receptor Binding Site by Conformationally Restrained<br>Derivatives of 1-(2-Chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide (PK11195).<br>Journal of Medicinal Chemistry, 1997, 40, 2910-2921.                                   | 2.9 | 51        |
| 142 | α1-Adrenoceptor subtype selectivity: Molecular modelling and theoretical quantitative<br>structure—affinity relationships. Bioorganic and Medicinal Chemistry, 1997, 5, 809-816.                                                                                                           | 1.4 | 27        |
| 143 | Theoretical investigation of IL-6 multiprotein receptor assembly. , 1997, 29, 528-548.                                                                                                                                                                                                     |     | 9         |
| 144 | Synthesis, Biological Evaluation, and Quantitative Receptor Docking Simulations of<br>2-[(Acylamino)ethyl]-1,4-benzodiazepines as Novel Tifluadom-like Ligands with High Affinity and<br>Selectivity for Iº-Opioid Receptors1, Journal of Medicinal Chemistry, 1996, 39, 860-872,          | 2.9 | 42        |

| #   | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Computational simulations of stem-cell factor/c-Kit receptor interaction. , 1996, 26, 42-54.                                                                                                                                                                     |     | 2         |
| 146 | Molecular structure and dynamics of some potent 5-HT 3 receptor antagonists. Insight into the interaction with the receptor. Bioorganic and Medicinal Chemistry, 1996, 4, 1255-1269.                                                                             | 1.4 | 20        |
| 147 | Molecular dynamics simulations of m3-muscarinic receptor activation and QSAR analysis. Bioorganic and Medicinal Chemistry, 1995, 3, 1465-1477.                                                                                                                   | 1.4 | 20        |
| 148 | Theoretical quantitative structure-activity relationship analysis of congeneric and non-congeneric<br>α1-adrenoceptor antagonists: a chemometric study. Computational and Theoretical Chemistry, 1995, 331,<br>79-93.                                            | 1.5 | 26        |
| 149 | Quantitative structure-affinity/selectivity relationship analysis on three-dimensional models of the complexes between the ETA and ETB receptors and C-terminal endothelin hexapeptide antagonists. Computational and Theoretical Chemistry, 1995, 333, 243-248. | 1.5 | 5         |
| 150 | Comparative molecular dynamics study of the seven-helix bundle arrangement of G-protein coupled receptors. Computational and Theoretical Chemistry, 1995, 333, 49-69.                                                                                            | 1.5 | 18        |
| 151 | Prototropic molecular forms and theoretical descriptors in QSAR analysis. Computational and Theoretical Chemistry, 1995, 333, 1-17.                                                                                                                              | 1.5 | 11        |
| 152 | Computer simulations of signal transduction mechanism in α1B-adrenergic and m3-muscarinic receptors. Protein Engineering, Design and Selection, 1995, 8, 557-564.                                                                                                | 1.0 | 20        |
| 153 | Theoretical quantitative structure—activity relationship analysis on three dimensional models of<br>ligand—m1 muscarinic receptor complexes. Bioorganic and Medicinal Chemistry, 1994, 2, 195-211.                                                               | 1.4 | 23        |
| 154 | The heuristic-direct approach to theoretical quantitative structure-activity relationship analysis of<br>α1-adrenoceptor ligands. Computational and Theoretical Chemistry, 1994, 314, 265-276.                                                                   | 1.5 | 13        |
| 155 | Theoretical quantitative size and shape activity and selectivity analyses of 5-HT1A serotonin and<br>α1-adrenergic receptor ligands. Computational and Theoretical Chemistry, 1994, 305, 101-110.                                                                | 1.5 | 16        |
| 156 | Theoretical quantitative structure-activity analysis and pharmacophore modelling of selective<br>non-congeneric α1a-adrenergic antagonists. Computational and Theoretical Chemistry, 1993, 280,<br>283-290.                                                      | 1.5 | 14        |
| 157 | The heuristic-direct approach to quantitative structure-activity relationship analysis. Computational and Theoretical Chemistry, 1993, 285, 147-153.                                                                                                             | 1.5 | 18        |
| 158 | Theoretical quantitative structure-activity analysis of quinuclidine-based muscarinic cholinergic receptor ligands. Computational and Theoretical Chemistry, 1993, 283, 63-71.                                                                                   | 1.5 | 11        |
| 159 | A molecular dynamics simulation of sequence-directed recognition peptides interacting with bigendothelin. Computational and Theoretical Chemistry, 1993, 286, 95-108.                                                                                            | 1.5 | 1         |
| 160 | Correlation and multivariate analyses of spectroscopic and dihydropteroate synthase inhibitory<br>activity data in 4-aminoaryl (multisubstituted aryl) sulfones. Structural Chemistry, 1992, 3, 129-137.                                                         | 1.0 | 2         |
| 161 | Molecular mechanics and quantum chemical qsar analysis in carbonic anhydrase-heterocyclic sulfonamide interactions. Structural Chemistry, 1992, 3, 215-219.                                                                                                      | 1.0 | 15        |
| 162 | Theoretical versus empirical molecular descriptors in monosubstituted benzenes. Chemometrics and<br>Intelligent Laboratory Systems, 1992, 14, 209-224.                                                                                                           | 1.8 | 28        |

| #   | Article                                                                                                                                                                                                                                                   | IF         | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| 163 | Molecular modelling and quantitative structure- activity relationship analysis using theoretical<br>descriptors of 1,4-benzodioxan (WB-4101) related compounds α1-adrenergic antagonists. Computational<br>and Theoretical Chemistry, 1992, 276, 327-340. | 1.5        | 20        |
| 164 | Electronic and electrostatic aspects of carbonic anhydrase inhibition by sulphonamides.<br>Computational and Theoretical Chemistry, 1992, 256, 217-229.                                                                                                   | 1.5        | 7         |
| 165 | Theoretical conformational analysis, electronic structure and molecular modelling studies in<br>dihydropteroate synthase in hibition by multisubstituted s. Computational and Theoretical Chemistry,<br>1991, 233, 293-300.                               | 1.5        | 2         |
| 166 | Molecular orbital study of the nitrogen basicity of prazosin analogues in relation to their<br>α1-adrenoceptor binding affinity. Computational and Theoretical Chemistry, 1991, 233, 343-351.                                                             | 1.5        | 16        |
| 167 | Conformational analysis, molecular modeling and quantitative structure-activity relationship studies of 2,4-diamino-6,7-dimethoxy-2-substituted quinazoline α1-adrenergic antagonists. Computational and Theoretical Chemistry, 1991, 251, 307-318.       | 1.5        | 20        |
| 168 | Correlation and multivariate analyses of the spectroscopic data in 4′-substituted<br>4-nitrodiphenylsulfones. Structural Chemistry, 1991, 2, 47-55.                                                                                                       | 1.0        | 1         |
| 169 | QSAR Analysis in 2,4-Diamino-6,7-dimethoxy Quinoline Derivatives – α1-Adrenoceptor Antagonists âÂ<br>Using the Partial Least Squares (PLS) Method and Theoretical Molecular Descriptors. QSAR and<br>Combinatorial Science, 1990, 9, 340-345.             | €Â"<br>1.4 | 14        |
| 170 | A theoretical study of conformation-electronic structure relationships in benzensulfonamide inhibitors of the carbonic anhydrase enzyme. Computational and Theoretical Chemistry, 1989, 183, 393-401.                                                     | 1.5        | 4         |
| 171 | Quantitative structure-activity relationships in dihydropteroate synthase inhibition by multisubstituted sulfones. Design and synthesis of some new derivatives with improved potency. Journal of Medicinal Chemistry, 1989, 32, 2396-2399.               | 2.9        | 11        |
| 172 | The binding of benzenesulfonamides to carbonic anhydrase enzyme. A molecular mechanics study and quantitative structure-activity relationships. Journal of Medicinal Chemistry, 1989, 32, 951-956.                                                        | 2.9        | 45        |
| 173 | Rational drug design: binding free energy differences of carbonic anhydrase inhibitors. Journal of the<br>Chemical Society Chemical Communications, 1989, , 853.                                                                                          | 2.0        | 12        |
| 174 | Multinuclear NMR and vibrational spectroscopy studies of the substituent effects in benzensulphonamide inhibitors of the enzyme carbonic anhydrase. Journal of Molecular Structure, 1988, 175, 37-42.                                                     | 1.8        | 5         |
| 175 | Crystal and molecular structure of bis(2-amino-5-methyl-1,3,4-thiadiazole-N 3)dibromomercury(II). A spectroscopic study and INDO calculations. Journal of the Chemical Society Dalton Transactions, 1988, , 1075.                                         | 1.1        | 10        |
| 176 | Quantitative structure-activity analysis in dihydropteroate synthase inhibition of sulfones.<br>Comparison with sulfanilamides. Journal of Medicinal Chemistry, 1987, 30, 459-464.                                                                        | 2.9        | 21        |
| 177 | Understanding Crystallization, Mechanical Properties and Reactivity of Multicomponent Bioactive<br>Glasses Through Molecular Dynamics Simulations. SSRN Electronic Journal, 0, , .                                                                        | 0.4        | 0         |