Nai Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8822037/publications.pdf

Version: 2024-02-01

304743 265206 4,493 42 42 22 citations h-index g-index papers 49 49 49 2241 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	The neural correlates of amplitude of low-frequency fluctuation: a multimodal resting-state MEG and fMRI–EEG study. Cerebral Cortex, 2023, 33, 1119-1129.	2.9	6
2	Statistical learning in patients in the minimally conscious state. Cerebral Cortex, 2023, 33, 2507-2516.	2.9	7
3	Delta-band neural activity primarily tracks sentences instead of semantic properties of words. Neurolmage, 2022, 251, 118979.	4.2	15
4	Asymmetrical cross-modal influence on neural encoding of auditory and visual features in natural scenes. Neurolmage, 2022, 255, 119182.	4.2	3
5	Aesthetic judgment of architecture for Chinese observers. PLoS ONE, 2022, 17, e0265412.	2.5	2
6	Neural Tracking of Sound Rhythms Correlates With Diagnosis, Severity, and Prognosis of Disorders of Consciousness. Frontiers in Neuroscience, 2021, 15, 646543.	2.8	4
7	Î-Band Cortical Tracking of the Speech Envelope Shows the Linear Phase Property. ENeuro, 2021, 8, ENEURO.0058-21.2021.	1.9	10
8	The influence of linguistic information on cortical tracking of words. Neuropsychologia, 2020, 148, 107640.	1.6	12
9	Visual target detection in a distracting background relies on neural encoding of both visual targets and background. Neurolmage, 2020, 216, 116870.	4.2	6
10	Assessing the depth of language processing in patients with disorders of consciousness. Nature Neuroscience, 2020, 23, 761-770.	14.8	74
11	Low-frequency neural activity reflects rule-based chunking during speech listening. ELife, 2020, 9, .	6.0	28
12	Cortical encoding of acoustic and linguistic rhythms in spoken narratives. ELife, 2020, 9, .	6.0	18
13	Prior Knowledge Guides Speech Segregation in Human Auditory Cortex. Cerebral Cortex, 2019, 29, 1561-1571.	2.9	22
14	The Cortical Maps of Hierarchical Linguistic Structures during Speech Perception. Cerebral Cortex, 2019, 29, 3232-3240.	2.9	35
15	Auditory and language contributions to neural encoding of speech features in noisy environments. Neurolmage, 2019, 192, 66-75.	4.2	32
16	Imagined speech influences perceived loudness of sound. Nature Human Behaviour, 2018, 2, 225-234.	12.0	42
17	Attention Is Required for Knowledge-Based Sequential Grouping: Insights from the Integration of Syllables into Words. Journal of Neuroscience, 2018, 38, 1178-1188.	3.6	70
18	Eye activity tracks task-relevant structures during speech and auditory sequence perception. Nature Communications, 2018, 9, 5374.	12.8	26

#	Article	IF	CITATIONS
19	Differences in Neurocognitive Mechanisms Underlying the Processing of Center-Embedded and Non–embedded Musical Structures. Frontiers in Human Neuroscience, 2018, 12, 425.	2.0	6
20	Syntactic complexity and musical proficiency modulate neural processing of non-native music. Neuropsychologia, 2018, 121, 164-174.	1.6	12
21	Temporal modulations in speech and music. Neuroscience and Biobehavioral Reviews, 2017, 81, 181-187.	6.1	344
22	Sleep Disrupts High-Level Speech Parsing Despite Significant Basic Auditory Processing. Journal of Neuroscience, 2017, 37, 7772-7781.	3.6	78
23	Time-domain analysis of neural tracking of hierarchical linguistic structures. NeuroImage, 2017, 146, 333-340.	4.2	19
24	Rule-based and word-level statistics-based processing of language: insights from neuroscience. Language, Cognition and Neuroscience, 2017, 32, 570-575.	1.2	30
25	Characterizing Neural Entrainment to Hierarchical Linguistic Units using Electroencephalography (EEG). Frontiers in Human Neuroscience, 2017, 11, 481.	2.0	85
26	Perceptual integration rapidly activates dorsal visual pathway to guide local processing in early visual areas. PLoS Biology, 2017, 15, e2003646.	5.6	32
27	Interpretations of Frequency Domain Analyses of Neural Entrainment: Periodicity, Fundamental Frequency, and Harmonics. Frontiers in Human Neuroscience, 2016, 10, 274.	2.0	52
28	Encoding of natural sounds by variance of the cortical local field potential. Journal of Neurophysiology, 2016, 115, 2389-2398.	1.8	8
29	Cortical tracking of hierarchical linguistic structures in connected speech. Nature Neuroscience, 2016, 19, 158-164.	14.8	759
30	Rhythm of Silence. Trends in Cognitive Sciences, 2016, 20, 82-84.	7.8	6
31	Effects of Spectral Degradation on Attentional Modulation of Cortical Auditory Responses to Continuous Speech. JARO - Journal of the Association for Research in Otolaryngology, 2015, 16, 783-796.	1.8	45
32	How Noise and Language Proficiency Influence Speech Recognition by Individual Non-Native Listeners. PLoS ONE, 2014, 9, e113386.	2.5	6
33	Cortical entrainment to continuous speech: functional roles and interpretations. Frontiers in Human Neuroscience, 2014, 8, 311.	2.0	350
34	Differential modulation of auditory responses to attended and unattended speech in different listening conditions. Hearing Research, 2014, 316, 73-81.	2.0	82
35	Robust cortical entrainment to the speech envelope relies on the spectro-temporal fine structure. Neurolmage, 2014, 88, 41-46.	4.2	234
36	Robust Cortical Encoding of Slow Temporal Modulations of Speech. Advances in Experimental Medicine and Biology, 2013, 787, 373-381.	1.6	15

#	Article	IF	CITATION
37	Power and phase properties of oscillatory neural responses in the presence of background activity. Journal of Computational Neuroscience, 2013, 34, 337-343.	1.0	53
38	Mechanisms Underlying Selective Neuronal Tracking of Attended Speech at a "Cocktail Party― Neuron, 2013, 77, 980-991.	8.1	732
39	Adaptive Temporal Encoding Leads to a Background-Insensitive Cortical Representation of Speech. Journal of Neuroscience, 2013, 33, 5728-5735.	3.6	315
40	Emergence of neural encoding of auditory objects while listening to competing speakers. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11854-11859.	7.1	695
41	Sensitivity to temporal modulation rate and spectral bandwidth in the human auditory system: MEG evidence. Journal of Neurophysiology, 2012, 107, 2033-2041.	1.8	75
42	Neural Representations of Complex Temporal Modulations in the Human Auditory Cortex. Journal of Neurophysiology, 2009, 102, 2731-2743.	1.8	46