Cong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8820781/publications.pdf

Version: 2024-02-01

		81900	74163
88	6,306 citations	39	75
papers	citations	h-index	g-index
105	105	105	7565
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Structural Insights of Fe3+ Induced α-synuclein Fibrillation in Parkinson's Disease. Journal of Molecular Biology, 2023, 435, 167680.	4.2	7
2	Spatiotemporal dynamic regulation of membraneless organelles by chaperone networks. Trends in Cell Biology, 2022, 32, 1-3.	7.9	15
3	Molecular structure of an amyloid fibril formed by FUS low-complexity domain. IScience, 2022, 25, 103701.	4.1	19
4	Low Cost, Easily-Assembled Centrifugal Buoyancy-Based Emulsification and Digital PCR. Micromachines, 2022, 13, 171.	2.9	3
5	A high-throughput method for exploring the parameter space of protein liquid-liquid phase separation. Cell Reports Physical Science, 2022, 3, 100764.	5.6	5
6	Ultrasensitive SERS Analysis of Liquid and Gaseous Putrescine and Cadaverine by a 3D-Rosettelike Nanostructure-Decorated Flexible Porous Substrate. Analytical Chemistry, 2022, 94, 5273-5283.	6.5	17
7	Liquid-liquid phase separation of RBGD2/4 is required for heat stress resistance in Arabidopsis. Developmental Cell, 2022, 57, 583-597.e6.	7.0	45
8	SARS-CoV-2 impairs the disassembly of stress granules and promotes ALS-associated amyloid aggregation. Protein and Cell, 2022, 13, 602-614.	11.0	15
9	The mouse nicotinamide mononucleotide adenylyltransferase chaperones diverse pathological amyloid client proteins. Journal of Biological Chemistry, 2022, 298, 101912.	3.4	1
10	Identifying Heterozipper β-Sheet in Twisted Amyloid Aggregation. Nano Letters, 2022, 22, 3707-3712.	9.1	8
11	Generic amyloid fibrillation of TMEM106B in patient with Parkinson's disease dementia and normal elders. Cell Research, 2022, 32, 585-588.	12.0	23
12	Hsp70 exhibits a liquid-liquid phase separation ability and chaperones condensed FUS against amyloid aggregation. IScience, 2022, 25, 104356.	4.1	14
13	Conformational strains of pathogenic amyloid proteins in neurodegenerative diseases. Nature Reviews Neuroscience, 2022, 23, 523-534.	10.2	43
14	Cryo-EM structure of an amyloid fibril formed by full-length human SOD1 reveals its conformational conversion. Nature Communications, 2022, 13, .	12.8	12
15	Unraveling the Potential-Dependent Volcanic Selectivity Changes of an Atomically Dispersed Ni Catalyst During CO ₂ Reduction. ACS Catalysis, 2022, 12, 8676-8686.	11.2	16
16	Hierarchical chemical determination of amyloid polymorphs in neurodegenerative disease. Nature Chemical Biology, 2021, 17, 237-245.	8.0	66
17	A novel partially open state of SHP2 points to a "multiple gear―regulation mechanism. Journal of Biological Chemistry, 2021, 296, 100538.	3.4	18
18	Proximal Single-Stranded RNA Destabilizes Human Telomerase RNA G-Quadruplex and Induces Its Distinct Conformers. Journal of Physical Chemistry Letters, 2021, 12, 3361-3366.	4.6	9

#	Article	IF	Citations
19	The structure of a minimum amyloid fibril core formed by necroptosis-mediating RHIM of human RIPK3. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	27
20	Wild-type $\hat{l}\pm$ -synuclein inherits the structure and exacerbated neuropathology of E46K mutant fibril strain by cross-seeding. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	24
21	Mechanistic basis for receptor-mediated pathological α-synuclein fibril cell-to-cell transmission in Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	59
22	Hsp70 chaperones TDP-43 in dynamic, liquid-like phase and prevents it from amyloid aggregation. Cell Research, 2021, 31, 1024-1027.	12.0	30
23	Continuous in situ portable SERS analysis of pollutants in water and air by a highly sensitive gold nanoparticle-decorated PVDF substrate. Analytical and Bioanalytical Chemistry, 2021, 413, 5469-5482.	3.7	17
24	Genetic prion disease–related mutation E196K displays a novel amyloid fibril structure revealed by cryo-EM. Science Advances, 2021, 7, eabg9676.	10.3	28
25	The hereditary mutation G51D unlocks a distinct fibril strain transmissible to wild-type α-synuclein. Nature Communications, 2021, 12, 6252.	12.8	33
26	O-Glycosylation Induces Amyloid- \hat{l}^2 To Form New Fibril Polymorphs Vulnerable for Degradation. Journal of the American Chemical Society, 2021, 143, 20216-20223.	13.7	22
27	One-Step Generation and Purification of Cell-Encapsulated Hydrogel Microsphere With an Easily Assembled Microfluidic Device. Frontiers in Bioengineering and Biotechnology, 2021, 9, 816089.	4.1	8
28	General Strategy to Optimize Gas Evolution Reaction via Assembled Striped-Pattern Superlattices. Journal of the American Chemical Society, 2020, 142, 1857-1863.	13.7	93
29	Hsp40 proteins phase separate to chaperone the assembly and maintenance of membraneless organelles. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31123-31133.	7.1	66
30	Parkinson's disease-related phosphorylation at Tyr39 rearranges α-synuclein amyloid fibril structure revealed by cryo-EM. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20305-20315.	7.1	113
31	The nuclear localization sequence mediates hnRNPA1 amyloid fibril formation revealed by cryoEM structure. Nature Communications, 2020, 11 , 6349.	12.8	33
32	Parkinson's disease associated mutation E46K of α-synuclein triggers the formation of a distinct fibril structure. Nature Communications, 2020, 11, 2643.	12.8	76
33	Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases. Science China Life Sciences, 2020, 63, 953-985.	4.9	164
34	Cryo-EM structure of an amyloid fibril formed by full-length human prion protein. Nature Structural and Molecular Biology, 2020, 27, 598-602.	8.2	112
35	Cryo-EM structure of full-length α-synuclein amyloid fibril with Parkinson's disease familial A53T mutation. Cell Research, 2020, 30, 360-362.	12.0	94
36	Different regions of synaptic vesicle membrane regulate VAMP2 conformation for the SNARE assembly. Nature Communications, 2020, 11, 1531.	12.8	30

#	Article	IF	CITATIONS
37	Hsp27 chaperones FUS phase separation under the modulation of stress-induced phosphorylation. Nature Structural and Molecular Biology, 2020, 27, 363-372.	8.2	117
38	Mechanical penetration of β-lactam–resistant Gram-negative bacteria by programmable nanowires. Science Advances, 2020, 6, .	10.3	23
39	Stress Induces Dynamic, Cytotoxicity-Antagonizing TDP-43 Nuclear Bodies via Paraspeckle LncRNA NEAT1-Mediated Liquid-Liquid Phase Separation. Molecular Cell, 2020, 79, 443-458.e7.	9.7	118
40	Structural Diversity of Amyloid Fibrils and Advances in Their Structure Determination. Biochemistry, 2020, 59, 639-646.	2.5	32
41	Structural basis of the interplay between α-synuclein and Tau in regulating pathological amyloid aggregation. Journal of Biological Chemistry, 2020, 295, 7470-7480.	3.4	34
42	Phase Separation of Disease-Associated SHP2 Mutants Underlies MAPK Hyperactivation. Cell, 2020, 183, 490-502.e18.	28.9	123
43	Nicotinamide mononucleotide adenylyltransferase uses its NAD+ substrate-binding site to chaperone phosphorylated Tau. ELife, 2020, 9, .	6.0	18
44	Programming Conventional Electron Microscopes for Solving Ultrahigh-Resolution Structures of Small and Macro-Molecules. Analytical Chemistry, 2019, 91, 10996-11003.	6.5	23
45	Second messenger Ap4A polymerizes target protein HINT1 to transduce signals in FclµRI-activated mast cells. Nature Communications, 2019, 10, 4664.	12.8	19
46	Exploiting mammalian low-complexity domains for liquid-liquid phase separation–driven underwater adhesive coatings. Science Advances, 2019, 5, eaax3155.	10.3	62
47	Coordination mode engineering in stacked-nanosheet metal–organic frameworks to enhance catalytic reactivity and structural robustness. Nature Communications, 2019, 10, 2779.	12.8	89
48	Fibril Self-Assembly of Amyloid–Spider Silk Block Polypeptides. Biomacromolecules, 2019, 20, 2015-2023.	5.4	24
49	Structural basis for reversible amyloids of hnRNPA1 elucidates their role in stress granule assembly. Nature Communications, 2019, 10, 2006.	12.8	157
50	New insights of poly(ADP-ribosylation) in neurodegenerative diseases: A focus on protein phase separation and pathologic aggregation. Biochemical Pharmacology, 2019, 167, 58-63.	4.4	32
51	Modular genetic design of multi-domain functional amyloids: insights into self-assembly and functional properties. Chemical Science, 2019, 10, 4004-4014.	7.4	18
52	Detecting Singleâ€Molecule Dynamics on Lipid Membranes with Quenchersâ€inâ€aâ€Liposome FRET. Angewandte Chemie, 2019, 131, 5633-5637.	2.0	8
53	Detecting Singleâ€Molecule Dynamics on Lipid Membranes with Quenchersâ€inâ€aâ€Liposome FRET. Angewandte Chemie - International Edition, 2019, 58, 5577-5581.	13.8	18
54	PARylation regulates stress granule dynamics, phase separation, and neurotoxicity of disease-related RNA-binding proteins. Cell Research, 2019, 29, 233-247.	12.0	175

#	Article	IF	CITATIONS
55	Heat shock protein 104 (HSP104) chaperones soluble Tau via a mechanism distinct from its disaggregase activity. Journal of Biological Chemistry, 2019, 294, 4956-4965.	3.4	28
56	A Metastable Crystalline Phase in Twoâ€Dimensional Metallic Oxide Nanoplates. Angewandte Chemie, 2019, 131, 2077-2081.	2.0	7
57	In-Cell NMR Study of Tau and MARK2 Phosphorylated Tau. International Journal of Molecular Sciences, 2019, 20, 90.	4.1	22
58	A Metastable Crystalline Phase in Twoâ€Dimensional Metallic Oxide Nanoplates. Angewandte Chemie - International Edition, 2019, 58, 2055-2059.	13.8	19
59	A stable lead halide perovskite nanocrystals protected by PMMA. Science China Materials, 2018, 61, 363-370.	6.3	55
60	Atomic structures of FUS LC domain segments reveal bases for reversible amyloid fibril formation. Nature Structural and Molecular Biology, 2018, 25, 341-346.	8.2	185
61	Selective Surface Enhanced Raman Scattering for Quantitative Detection of Lung Cancer Biomarkers in Superparticle@MOF Structure. Advanced Materials, 2018, 30, 1702275.	21.0	301
62	Better Together: A Hybrid Amyloid Signals Necroptosis. Cell, 2018, 173, 1068-1070.	28.9	7
63	Amyloid fibril structure of \hat{l} ±-synuclein determined by cryo-electron microscopy. Cell Research, 2018, 28, 897-903.	12.0	339
64	Mechanistic insights into the switch of $\hat{l}\pm B$ -crystallin chaperone activity and self-multimerization. Journal of Biological Chemistry, 2018, 293, 14880-14890.	3.4	41
65	Diverse Supramolecular Nanofiber Networks Assembled by Functional Low-Complexity Domains. ACS Nano, 2017, 11, 6985-6995.	14.6	41
66	Microfluidic disk for the determination of human blood types. Microsystem Technologies, 2017, 23, 5645-5651.	2.0	4
67	Ordered Superparticles with an Enhanced Photoelectric Effect by Subâ€Nanometer Interparticle Distance. Advanced Functional Materials, 2017, 27, 1701982.	14.9	32
68	Understanding the Selective Detection of Fe $<$ sup $>$ 3+ $<$ /sup $>$ Based on Graphene Quantum Dots as Fluorescent Probes: The $<$ i> $>$ 6 $<$ 1 >6 6 $<$ 1 >6 7 $<$ 1 >6 9 $<$ 1 $>7<1>99<1>91<1>91<1>91<1>91<1>91<1>91<1>91<1<1<1<1<1<1<1<1<1<$	6.5	143
69	N-Terminal Acetylation Preserves α-Synuclein from Oligomerization by Blocking Intermolecular Hydrogen Bonds. ACS Chemical Neuroscience, 2017, 8, 2145-2151.	3.5	52
70	Allosteric Inhibitors of SHP2 with Therapeutic Potential for Cancer Treatment. Journal of Medicinal Chemistry, 2017, 60, 10205-10219.	6.4	85
71	A Structural View of $\hat{l}\pm B$ -crystallin Assembly and Amyloid Aggregation. Protein and Peptide Letters, 2017, 24, 315-321.	0.9	15
72	Versatile Structures of α-Synuclein. Frontiers in Molecular Neuroscience, 2016, 9, 48.	2.9	92

#	Article	lF	Citations
73	Precise and Reversible Protein-Microtubule-Like Structure with Helicity Driven by Dual Supramolecular Interactions. Journal of the American Chemical Society, 2016, 138, 1932-1937.	13.7	85
74	Tunable assembly of amyloid-forming peptides into nanosheets as a retrovirus carrier. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2996-3001.	7.1	123
75	Structure-Based Design of Functional Amyloid Materials. Journal of the American Chemical Society, 2014, 136, 18044-18051.	13.7	102
76	The structured core domain of $\hat{l}\pm B$ -crystallin can prevent amyloid fibrillation and associated toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1562-70.	7.1	181
77	Designed amyloid fibers as materials for selective carbon dioxide capture. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 191-196.	7.1	93
78	Sc(OTf) ₃ -Catalyzed Transfer Diazenylation of 1,3-Dicarbonyls with Triazenes via N–N Bond Cleavage. Organic Letters, 2014, 16, 5458-5461.	4.6	37
79	Antiparallel Triple-strand Architecture for Prefibrillar AÎ ² 42 Oligomers. Journal of Biological Chemistry, 2014, 289, 27300-27313.	3.4	60
80	Structural Insights into A \hat{I}^2 42 Oligomers Using Site-directed Spin Labeling. Journal of Biological Chemistry, 2013, 288, 18673-18683.	3.4	70
81	Structure-based discovery of fiber-binding compounds that reduce the cytotoxicity of amyloid beta. ELife, 2013, 2, e00857.	6.0	94
82	Out-of-register \hat{I}^2 -sheets suggest a pathway to toxic amyloid aggregates. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20913-20918.	7.1	184
83	Amyloid \hat{l}^2 -sheet mimics that antagonize protein aggregation and reduce amyloid toxicity. Nature Chemistry, 2012, 4, 927-933.	13.6	213
84	Atomic View of a Toxic Amyloid Small Oligomer. Science, 2012, 335, 1228-1231.	12.6	518
85	Toxic fibrillar oligomers of amyloid- \hat{l}^2 have cross- \hat{l}^2 structure. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7717-7722.	7.1	286
86	Macrocyclic \hat{l}^2 -Sheet Peptides That Inhibit the Aggregation of a Tau-Protein-Derived Hexapeptide. Journal of the American Chemical Society, 2011, 133, 3144-3157.	13.7	114
87	\hat{l}^2 2-microglobulin forms three-dimensional domain-swapped amyloid fibrils with disulfide linkages. Nature Structural and Molecular Biology, 2011, 18, 49-55.	8.2	105
88	Characteristics of Amyloid-Related Oligomers Revealed by Crystal Structures of Macrocyclic Î ² -Sheet Mimics. Journal of the American Chemical Society, 2011, 133, 6736-6744.	13.7	84