Gloria M Petersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8820344/publications.pdf

Version: 2024-02-01

30070 15266 18,031 130 54 126 citations g-index h-index papers 135 135 135 22202 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Influence of Cancer Susceptibility Gene Mutations and ABO Blood Group of Pancreatic Cancer Probands on Concomitant Risk to First-Degree Relatives. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 372-381.	2.5	3
2	Aspirin, Statins, Non-aspirin NSAIDs, Metformin, and the Risk of Biliary Cancer: A Swedish Population-Based Cohort Study. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 804-810.	2.5	5
3	Pancreatic cancer risk to siblings of probands in bilineal cancer settings. Genetics in Medicine, 2022, 24, 1008-1016.	2.4	4
4	A Pilot Study of Blood-Based Methylation Markers Associated With Pancreatic Cancer. Frontiers in Genetics, 2022, 13, 849839.	2.3	0
5	Targeting DNA Damage Response and Replication Stress in Pancreatic Cancer. Gastroenterology, 2021, 160, 362-377.e13.	1.3	90
6	THBS2/CA19-9 Detecting Pancreatic Ductal Adenocarcinoma at Diagnosis Underperforms in Prediagnostic Detection: Implications for Biomarker Advancement. Cancer Prevention Research, 2021, 14, 223-232.	1.5	13
7	Intact SMAD-4 is a predictor of increased locoregional recurrence in upfront resected pancreas cancer receiving adjuvant therapy. Journal of Gastrointestinal Oncology, 2021, 12, 2275-2286.	1.4	4
8	A rare germline CDKN2A variant (47T>G; p16-L16R) predisposes carriers to pancreatic cancer by reducing cell cycle inhibition. Journal of Biological Chemistry, 2021, 296, 100634.	3.4	2
9	A multilayered post-GWAS assessment on genetic susceptibility to pancreatic cancer. Genome Medicine, 2021, 13, 15.	8.2	15
10	High Detection Rates of Pancreatic Cancer Across Stages by Plasma Assay of Novel Methylated DNA Markers and CA19-9. Clinical Cancer Research, 2021, 27, 2523-2532.	7.0	17
11	Smoking Modifies Pancreatic Cancer Risk Loci on 2q21.3. Cancer Research, 2021, 81, 3134-3143.	0.9	8
12	Hepcidin-regulating iron metabolism genes and pancreatic ductal adenocarcinoma: a pathway analysis of genome-wide association studies. American Journal of Clinical Nutrition, 2021, 114, 1408-1417.	4.7	9
13	A 584Âbp deletion in CTRB2 inhibits chymotrypsin B2 activity and secretion and confers risk of pancreatic cancer. American Journal of Human Genetics, 2021, 108, 1852-1865.	6.2	15
14	A risk prediction tool for individuals with a family history of breast, ovarian, or pancreatic cancer: BRCAPANCPRO. British Journal of Cancer, 2021, 125, 1712-1717.	6.4	4
15	Shorter Treatment-Na $\tilde{\mathbb{A}}$ -ve Leukocyte Telomere Length is Associated with Poorer Overall Survival of Patients with Pancreatic Ductal Adenocarcinoma. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 210-216.	2.5	2
16	Methylated DNA in Pancreatic Juice Distinguishes Patients With Pancreatic Cancer From Controls. Clinical Gastroenterology and Hepatology, 2020, 18, 676-683.e3.	4.4	40
17	A Transcriptome-Wide Association Study Identifies Novel Candidate Susceptibility Genes for Pancreatic Cancer. Journal of the National Cancer Institute, 2020, 112, 1003-1012.	6.3	59
18	Effect of Germline Mutations in Homologous Recombination Repair Genes on Overall Survival of Patients with Pancreatic Adenocarcinoma. Clinical Cancer Research, 2020, 26, 6505-6512.	7.0	24

#	Article	IF	CITATIONS
19	Role of Surgery and Perioperative Therapy in Older Patients with Resectable Pancreatic Ductal Adenocarcinoma. Oncologist, 2020, 25, e1681-e1690.	3.7	5
20	Gallbladder disease, cholecystectomy, and pancreatic cancer risk in the International Pancreatic Cancer Case-Control Consortium (PanC4). European Journal of Cancer Prevention, 2020, 29, 408-415.	1.3	1
21	Survival Benefit of Combination Chemotherapy in Elderly Patients With Metastatic Pancreatic Ductal Adenocarcinoma. American Journal of Clinical Oncology: Cancer Clinical Trials, 2020, 43, 586-590.	1.3	5
22	Mendelian Randomization Analysis of n-6 Polyunsaturated Fatty Acid Levels and Pancreatic Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 2735-2739.	2.5	6
23	Bayesian copy number detection and association in large-scale studies. BMC Cancer, 2020, 20, 856.	2.6	0
24	Genome-Wide Gene–Diabetes and Gene–Obesity Interaction Scan in 8,255 Cases and 11,900 Controls from PanScan and PanC4 Consortia. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1784-1791.	2.5	5
25	Systemic Proteome Alterations Linked to Early Stage Pancreatic Cancer in Diabetic Patients. Cancers, 2020, 12, 1534.	3.7	18
26	Genome-Wide Association Study Data Reveal Genetic Susceptibility to Chronic Inflammatory Intestinal Diseases and Pancreatic Ductal Adenocarcinoma Risk. Cancer Research, 2020, 80, 4004-4013.	0.9	5
27	Assessment of polygenic architecture and risk prediction based on common variants across fourteen cancers. Nature Communications, 2020, 11 , 3353.	12.8	75
28	Leukocyte Telomere Length and Its Interaction with Germline Variation in Telomere-Related Genes in Relation to Pancreatic Adenocarcinoma Risk. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1492-1500.	2.5	5
29	Associations between Genetically Predicted Blood Protein Biomarkers and Pancreatic Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1501-1508.	2.5	18
30	Accuracy of Smoking Status Reporting. Mayo Clinic Proceedings Innovations, Quality & Outcomes, 2020, 4, 801-809.	2.4	1
31	Risk of Different Cancers Among First-degree Relatives of Pancreatic Cancer Patients: Influence of Probands' Susceptibility Gene Mutation Status. Journal of the National Cancer Institute, 2019, 111, 264-271.	6.3	10
32	A Pathway Analysis of Hereditary Hemochromatosis-related Genes and Pancreatic Ductal Adenocarcinoma Risk (FS11-05-19). Current Developments in Nutrition, 2019, 3, nzz037.FS11-05-19.	0.3	0
33	A region-based gene association study combined with a leave-one-out sensitivity analysis identifies SMG1 as a pancreatic cancer susceptibility gene. PLoS Genetics, 2019, 15, e1008344.	3.5	13
34	Integration of Genomic and Transcriptional Features in Pancreatic Cancer Reveals Increased Cell Cycle Progression in Metastases. Cancer Cell, 2019, 35, 267-282.e7.	16.8	151
35	Analysis of Heritability and Genetic Architecture of Pancreatic Cancer: A PanC4 Study. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 1238-1245.	2.5	48
36	Pancreatic cancer and melanoma related perceptions and behaviors following disclosure of CDKN2A variant status as a research result. Genetics in Medicine, 2019, 21, 2468-2477.	2.4	6

#	Article	IF	CITATIONS
37	Agnostic Pathway/Gene Set Analysis of Genome-Wide Association Data Identifies Associations for Pancreatic Cancer. Journal of the National Cancer Institute, 2019, 111, 557-567.	6.3	21
38	Should Researchers Offer Results to Family Members of Cancer Biobank Participants? A Mixed-Methods Study of Proband and Family Preferences. AJOB Empirical Bioethics, 2019, 10, 1-22.	1.6	17
39	Leukocyte Telomere Length and Pancreatic Cancer Risk. Pancreas, 2018, 47, 265-271.	1.1	9
40	Mutations in the pancreatic secretory enzymes <i>CPA1</i> and <i>CPB1</i> are associated with pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4767-4772.	7.1	65
41	Decreased Skeletal Muscle Volume Is a Predictive Factor for Poorer Survival in Patients Undergoing Surgical Resection for Pancreatic Ductal Adenocarcinoma. Journal of Gastrointestinal Surgery, 2018, 22, 831-839.	1.7	40
42	Transcriptional regulation by NR5A2 links differentiation and inflammation in the pancreas. Nature, 2018, 554, 533-537.	27.8	101
43	Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. Nature Communications, 2018, 9, 556.	12.8	188
44	Characterising <i>cis</i> -regulatory variation in the transcriptome of histologically normal and tumour-derived pancreatic tissues. Gut, 2018, 67, 521-533.	12.1	26
45	Prevalence of germ-line mutations in cancer genes among pancreatic cancer patients with a positive family history. Genetics in Medicine, 2018, 20, 119-127.	2.4	109
46	Psychological Impact of Learning <i>CDKN2A</i> Variant Status as a Genetic Research Result. Public Health Genomics, 2018, 21, 154-163.	1.0	7
47	Intercepting Pancreatic Cancer. Pancreas, 2018, 47, 1175-1176.	1.1	1
48	Pancreatic cancer risk is modulated by inflammatory potential of diet and ABO genotype: a consortia-based evaluation and replication study. Carcinogenesis, 2018, 39, 1056-1067.	2.8	23
49	Attitudes Toward Return of Genetic Research Results to Relatives, Including After Death: Comparison of Cancer Probands, Blood Relatives, and Spouse/Partners. Journal of Empirical Research on Human Research Ethics, 2018, 13, 295-304.	1.3	11
50	<i>CDKN2A</i> Germline Rare Coding Variants and Risk of Pancreatic Cancer in Minority Populations. Cancer Epidemiology Biomarkers and Prevention, 2018, 27, 1364-1370.	2.5	23
51	A New Strategy to Control and Eradicate "Undruggable―Oncogenic K-RAS-Driven Pancreatic Cancer: Molecular Insights and Core Principles Learned from Developmental and Evolutionary Biology. Cancers, 2018, 10, 142.	3.7	17
52	Association Between Inherited Germline Mutations in Cancer Predisposition Genes and Risk of Pancreatic Cancer. JAMA - Journal of the American Medical Association, 2018, 319, 2401.	7.4	375
53	Genetically Predicted Telomere Length is not Associated with Pancreatic Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 971-974.	2.5	11
54	Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases. JAMA Oncology, 2017, 3, 636.	7.1	376

#	Article	IF	Citations
55	Diabetes, Pancreatogenic Diabetes, and Pancreatic Cancer. Diabetes, 2017, 66, 1103-1110.	0.6	311
56	Functional characterization of a multi-cancer risk locus on chr5p15.33 reveals regulation of TERT by ZNF148. Nature Communications, 2017, 8, 15034.	12.8	40
57	Differential and Joint Effects of Metformin and Statins on Overall Survival of Elderly Patients with Pancreatic Adenocarcinoma: A Large Population-Based Study. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 1225-1232.	2.5	25
58	Quantitative Proteomics Based on Optimized Data-Independent Acquisition in Plasma Analysis. Journal of Proteome Research, 2017, 16, 665-676.	3.7	39
59	EUS-guided fine-needle injection of gemcitabine for locally advanced and metastatic pancreatic cancer. Gastrointestinal Endoscopy, 2017, 86, 161-169.	1.0	58
60	Detection of early pancreatic ductal adenocarcinoma with thrombospondin-2 and CA19-9 blood markers. Science Translational Medicine, 2017, 9, .	12.4	193
61	Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10202-10207.	7.1	438
62	Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell, 2017, 32, 185-203.e13.	16.8	1,428
63	Telomere Length and Pancreatic Cancer Risk—Reply. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 1158-1159.	2.5	0
64	Quantifying the Genetic Correlation between Multiple Cancer Types. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 1427-1435.	2.5	48
65	Immunosuppressive CD14 ⁺ HLA-DR ^{lo/neg} monocytes are elevated in pancreatic cancer and "primed―by tumor-derived exosomes. Oncolmmunology, 2017, 6, e1252013.	4.6	59
66	Association of Distinct Mutational Signatures With Correlates of Increased Immune Activity in Pancreatic Ductal Adenocarcinoma. JAMA Oncology, 2017, 3, 774.	7.1	221
67	Association between Alcohol Consumption, Folate Intake, and Risk of Pancreatic Cancer: A Case-Control Study. Nutrients, 2017, 9, 0448.	4.1	9
68	Three new pancreatic cancer susceptibility signals identified on chromosomes 1q32.1, 5p15.33 and 8q24.21. Oncotarget, 2016, 7, 66328-66343.	1.8	88
69	Association of Common Susceptibility Variants of Pancreatic Cancer in Higher-Risk Patients: A PACGENE Study. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 1185-1191.	2.5	29
70	Metformin Use and Survival of Patients With Pancreatic Cancer: A Cautionary Lesson. Journal of Clinical Oncology, 2016, 34, 1898-1904.	1.6	69
71	Functional characterization of a chr13q22.1 pancreatic cancer risk locus reveals long-range interaction and allele-specific effects on <i>DIS3</i> expression. Human Molecular Genetics, 2016, 25, ddw300.	2.9	24
72	A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns. Nature, 2016, 538, 378-382.	27.8	418

#	Article	IF	Citations
73	Familial pancreatic cancer. Seminars in Oncology, 2016, 43, 548-553.	2.2	114
74	Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome. Nature Communications, 2016, 7, 11843 .	12.8	86
75	Whole Genome Sequencing Defines the Genetic Heterogeneity of Familial Pancreatic Cancer. Cancer Discovery, 2016, 6, 166-175.	9.4	282
76	Genomic analyses identify molecular subtypes of pancreatic cancer. Nature, 2016, 531, 47-52.	27.8	2,700
77	Integrated Genomic Analysis of Pancreatic Ductal Adenocarcinomas Reveals Genomic Rearrangement Events as Significant Drivers of Disease. Cancer Research, 2016, 76, 749-761.	0.9	27
78	Candidate DNA repair susceptibility genes identified by exome sequencing in high-risk pancreatic cancer. Cancer Letters, 2016, 370, 302-312.	7.2	47
79	Prevalence of Pathogenic Mutations in Cancer Predisposition Genes among Pancreatic Cancer Patients. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 207-211.	2.5	116
80	Winner's Curse Correction and Variable Thresholding Improve Performance of Polygenic Risk Modeling Based on Genome-Wide Association Study Summary-Level Data. PLoS Genetics, 2016, 12, e1006493.	3.5	98
81	<scp><i>TERT</i></scp> gene harbors multiple variants associated with pancreatic cancer susceptibility. International Journal of Cancer, 2015, 137, 2175-2183.	5.1	57
82	Detection of DNA damage in peripheral blood mononuclear cells from pancreatic cancer patients. Molecular Carcinogenesis, 2015, 54, 1220-1226.	2.7	5
83	Vitamin D Metabolic Pathway Genes and Pancreatic Cancer Risk. PLoS ONE, 2015, 10, e0117574.	2.5	29
84	Characterization of Large Structural Genetic Mosaicism in Human Autosomes. American Journal of Human Genetics, 2015, 96, 487-497.	6.2	101
85	New DNA Methylation Markers for Pancreatic Cancer: Discovery, Tissue Validation, and Pilot Testing in Pancreatic Juice. Clinical Cancer Research, 2015, 21, 4473-4481.	7.0	108
86	Familial Pancreatic Adenocarcinoma. Hematology/Oncology Clinics of North America, 2015, 29, 641-653.	2.2	46
87	Common variation at 2p13.3, 3q29, 7p13 and 17q25.1 associated with susceptibility to pancreatic cancer. Nature Genetics, 2015, 47, 911-916.	21.4	224
88	Zinc transporter genes and urological cancers: integrated analysis suggests a role for ZIP11 in bladder cancer. Tumor Biology, 2015, 36, 7431-7437.	1.8	22
89	Exposure to environmental chemicals and heavy metals, and risk of pancreatic cancer. Cancer Causes and Control, 2015, 26, 1583-1591.	1.8	78
90	Prevalence of Germline Mutations in Cancer Predisposition Genes in Patients With Pancreatic Cancer. Gastroenterology, 2015, 148, 556-564.	1.3	256

#	Article	IF	Citations
91	Pancreatic Cancer–Derived Exosomes Cause Paraneoplastic β-cell Dysfunction. Clinical Cancer Research, 2015, 21, 1722-1733.	7.0	147
92	BRCA1, BRCA2, PALB2, and CDKN2A mutations in familial pancreatic cancer: a PACGENE study. Genetics in Medicine, 2015, 17, 569-577.	2.4	231
93	Case-only exome sequencing and complex disease susceptibility gene discovery: study design considerations. Journal of Medical Genetics, 2015, 52, 10-16.	3.2	23
94	Do Variants Associated with Susceptibility to Pancreatic Cancer and Type 2 Diabetes Reciprocally Affect Risk?. PLoS ONE, 2015, 10, e0117230.	2.5	14
95	Gene-by-Environment Interactions in Pancreatic Cancer: Implications for Prevention. Yale Journal of Biology and Medicine, 2015, 88, 115-26.	0.2	10
96	Genes–Environment Interactions in Obesity- and Diabetes-Associated Pancreatic Cancer: A GWAS Data Analysis. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 98-106.	2.5	32
97	Transcriptome analysis of pancreatic cancer reveals a tumor suppressor function for HNF1A. Carcinogenesis, 2014, 35, 2670-2678.	2.8	46
98	The Association of Telomere Length with Colorectal Cancer Differs by the Age of Cancer Onset. Clinical and Translational Gastroenterology, 2014, 5, e52.	2.5	23
99	Variants Associated with Susceptibility to Pancreatic Cancer and Melanoma Do Not Reciprocally Affect Risk. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 1121-1124.	2.5	14
100	Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33. Human Molecular Genetics, 2014, 23, 6616-6633.	2.9	90
101	Inactivation of the Transcription Factor GLI1 Accelerates Pancreatic Cancer Progression. Journal of Biological Chemistry, 2014, 289, 16516-16525.	3.4	22
102	CLPTM1L Promotes Growth and Enhances Aneuploidy in Pancreatic Cancer Cells. Cancer Research, 2014, 74, 2785-2795.	0.9	48
103	Impact of Diabetes Mellitus on Clinical Outcomes in Patients Undergoing Surgical Resection for Pancreatic Cancer: A Retrospective, Cohort Study. American Journal of Gastroenterology, 2014, 109, 1484-1492.	0.4	26
104	Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer. Nature Genetics, 2014, 46, 994-1000.	21.4	294
105	Abstract A26: Attacking the most downstream "gatekeeper,―the SIAH-dependent proteolytic machinery, in the oncogenic ERBB/K-RAS signaling pathway to block tumorigenesis and control metastasis in human cancer. , 2014, , .		0
106	Receptivity and preferences of pancreatic cancer family members for participating in lifestyle programs to reduce cancer risk. Hereditary Cancer in Clinical Practice, 2013, 11, 3.	1.5	11
107	Meat-Related Mutagens and Pancreatic Cancer: Null Results from a Clinic-Based Case–Control Study. Cancer Epidemiology Biomarkers and Prevention, 2013, 22, 1336-1339.	2.5	13
108	<i>ATM</i> Mutations in Patients with Hereditary Pancreatic Cancer. Cancer Discovery, 2012, 2, 41-46.	9.4	442

#	Article	IF	CITATIONS
109	Telomere Length and Pancreatic Cancer: A Case–Control Study. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 2095-2100.	2.5	51
110	Factors influencing receptivity to future screening options for pancreatic cancer in those with and without pancreatic cancer family history. Hereditary Cancer in Clinical Practice, 2012, 10, 8.	1.5	17
111	Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature, 2012, 491, 399-405.	27.8	1,741
112	Carcinogenesis of pancreatic cancer: Challenges, collaborations, progress. Molecular Carcinogenesis, 2012, 51, 1-2.	2.7	11
113	Prevalence of CDKN2A mutations in pancreatic cancer patients: implications for genetic counseling. European Journal of Human Genetics, 2011, 19, 472-478.	2.8	112
114	Fruit and vegetable consumption is inversely associated with having pancreatic cancer. Cancer Causes and Control, 2011, 22, 1613-1625.	1.8	75
115	Cystic fibrosis transmembrane conductance regulator (<i>CFTR</i>) gene mutations and risk for pancreatic adenocarcinoma. Cancer, 2010, 116, 203-209.	4.1	80
116	Alcohol intake and pancreatic cancer: a pooled analysis from the pancreatic cancer cohort consortium (PanScan). Cancer Causes and Control, 2010, 21, 1213-1225.	1.8	93
117	Family history of cancer and risk of pancreatic cancer: A pooled analysis from the Pancreatic Cancer Cohort Consortium (PanScan). International Journal of Cancer, 2010, 127, 1421-1428.	5.1	128
118	A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nature Genetics, 2010, 42, 224-228.	21.4	539
119	The Prevalence of BRCA2 Mutations in Familial Pancreatic Cancer. Cancer Epidemiology Biomarkers and Prevention, 2007, 16, 342-346.	2.5	255
120	Mitochondrial Genetic Polymorphisms and Pancreatic Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2007, 16, 1455-1459.	2.5	74
121	Pancreatic Cancer Genetic Epidemiology Consortium. Cancer Epidemiology Biomarkers and Prevention, 2006, 15, 704-710.	2.5	133
122	Risk of malignancy in firstâ€degree relatives of patients with pancreatic carcinoma. Cancer, 2005, 104, 388-394.	4.1	78
123	Germ line Fanconi anemia complementation group C mutations and pancreatic cancer. Cancer Research, 2005, 65, 383-6.	0.9	89
124	Prospective Risk of Pancreatic Cancer in Familial Pancreatic Cancer Kindreds. Cancer Research, 2004, 64, 2634-2638.	0.9	595
125	Barriers to preventive intervention. Gastroenterology Clinics of North America, 2002, 31, 1061-1068.	2.2	25
126	Evidence for a major gene influencing risk of pancreatic cancer. Genetic Epidemiology, 2002, 23, 133-149.	1.3	123

#	ARTICLE	IF	CITATIONS
127	Evaluation of candidate genes MAP2K4, MADH4, ACVR1B, and BRCA2 in familial pancreatic cancer: deleterious BRCA2 mutations in 17%. Cancer Research, 2002, 62, 3789-93.	0.9	308
128	Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nature Genetics, 2001, 28, 184-187.	21.4	591
129	Very high risk of cancer in familial Peutz–Jeghers syndrome. Gastroenterology, 2000, 119, 1447-1453.	1.3	1,247
130	Genetics of Pancreatic Cancer. Surgical Oncology Clinics of North America, 1998, 7, 1-23.	1.5	170