Jerome Artus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8819945/publications.pdf

Version: 2024-02-01

24 2,247 19 23 g-index

24 24 24 24 2805

docs citations

all docs

times ranked

citing authors

#	Article	IF	CITATIONS
1	Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development (Cambridge), 2008, 135, 3081-3091.	2.5	470
2	The SUMO Pathway Is Essential for Nuclear Integrity and Chromosome Segregation in Mice. Developmental Cell, 2005, 9, 769-779.	7.0	456
3	FGF4 is required for lineage restriction and salt-and-pepper distribution of primitive endoderm factors but not their initial expression in the mouse. Development (Cambridge), 2013, 140, 267-279.	2.5	226
4	The primitive endoderm lineage of the mouse blastocyst: Sequential transcription factor activation and regulation of differentiation by Sox17. Developmental Biology, 2011, 350, 393-404.	2.0	193
5	Crucial role for DNA ligase III in mitochondria but not in Xrcc1-dependent repair. Nature, 2011, 471, 245-248.	27.8	190
6	A role for PDGF signaling in expansion of the extra-embryonic endoderm lineage of the mouse blastocyst. Development (Cambridge), 2010, 137, 3361-3372.	2.5	110
7	Conversion from mouse embryonic to extra-embryonic endoderm stem cells reveals distinct differentiation capacities of pluripotent stem cell states. Development (Cambridge), 2012, 139, 2866-2877.	2.5	87
8	BMP4 signaling directs primitive endoderm-derived XEN cells to an extraembryonic visceral endoderm identity. Developmental Biology, 2012, 361, 245-262.	2.0	72
9	PDGF signaling is required for primitive endoderm cell survival in the inner cell mass of the mouse blastocyst. Stem Cells, 2013, 31, 1932-1941.	3.2	51
10	A close look at the mammalian blastocyst: epiblast and primitive endoderm formation. Cellular and Molecular Life Sciences, 2014, 71, 3327-3338.	5.4	49
11	A Comparative Analysis of Extra-Embryonic Endoderm Cell Lines. PLoS ONE, 2010, 5, e12016.	2.5	47
12	Cell cycle regulation during early mouse embryogenesis. Molecular and Cellular Endocrinology, 2008, 282, 78-86.	3.2	42
13	Generation of Chimeras by Aggregation of Embryonic Stem Cells with Diploid or Tetraploid Mouse Embryos. Methods in Molecular Biology, 2011, 693, 37-56.	0.9	39
14	eXtraembryonic ENdoderm (XEN) Stem Cells Produce Factors that Activate Heart Formation. PLoS ONE, 2010, 5, e13446.	2.5	35
15	ICM conversion to epiblast by FGF/ERK inhibition is limited in time and requires transcription and protein degradation. Scientific Reports, 2017, 7, 12285.	3.3	30
16	Troika of the Mouse Blastocyst: Lineage Segregation and Stem Cells. Current Stem Cell Research and Therapy, 2012, 7, 78-91.	1.3	26
17	The Cell Cycle of Early Mammalian Embryos: Lessons from Genetic Mouse Models. Cell Cycle, 2006, 5, 499-502.	2.6	25
18	DNA-RNA hybrids contribute to the replication dependent genomic instability induced by <i> Omcg1 < /i > deficiency. Cell Cycle, 2011, 10, 108-117.</i>	2.6	23

#	Article	IF	CITATION
19	Impaired Mitotic Progression and Preimplantation Lethality in Mice Lacking OMCG1, a New Evolutionarily Conserved Nuclear Protein. Molecular and Cellular Biology, 2005, 25, 6289-6302.	2.3	22
20	Preimplantation development in ungulates: a â€~ménage à quatre' scenario. Reproduction, 2020, 159, R151-R172.	2.6	19
21	Aryl hydrocarbon receptor (AHR) is a novel druggable pathway controlling malignant progenitor proliferation in chronic myeloid leukemia (CML). PLoS ONE, 2018, 13, e0200923.	2.5	17
22	PDGF Signaling in Primitive Endoderm Cell Survival Is Mediated by PI3K-mTOR Through p53-Independent Mechanism. Stem Cells, 2019, 37, 888-898.	3.2	12
23	Omcg1 is critically required for mitosis in rapidly dividing mouse intestinal progenitors and embryonic stem cells. Biology Open, 2012, 1, 648-657.	1.2	5
24	Mitotic bookmarking by transcription factors and the preservation of pluripotency., 2020, , 131-153.		1