
Rubén RellÃ;n-Ãlvarez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/881978/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A B73×Palomero Toluqueño mapping population reveals local adaptation in Mexican highland maize. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	11
2	Demonstration of local adaptation in maize landraces by reciprocal transplantation. Evolutionary Applications, 2022, 15, 817-837.	3.1	15
3	An adaptive teosinte <i>mexicana</i> introgression modulates phosphatidylcholine levels and is associated with maize flowering time. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	21
4	Molecular Parallelism Underlies Convergent Highland Adaptation of Maize Landraces. Molecular Biology and Evolution, 2021, 38, 3567-3580.	8.9	35
5	The arches and spandrels of maize domestication, adaptation, and improvement. Current Opinion in Plant Biology, 2021, 64, 102124.	7.1	2
6	Gene regulatory effects of a large chromosomal inversion in highland maize. PLoS Genetics, 2020, 16, e1009213.	3.5	46
7	Inoculation with the mycorrhizal fungus <i>Rhizophagus irregularis</i> modulates the relationship between root growth and nutrient content in maize (<i>Zea mays</i> ssp. <i>mays</i> L.). Plant Direct, 2019, 3, e00192.	1.9	19
8	Malate-dependent Fe accumulation is a critical checkpoint in the root developmental response to low phosphate. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3563-E3572.	7.1	226
9	Co-ordinated Changes in the Accumulation of Metal Ions in Maize (Zea mays ssp. mays L.) in Response to Inoculation with the Arbuscular Mycorrhizal Fungus Funneliformis mosseae. Plant and Cell Physiology, 2017, 58, 1689-1699.	3.1	27
10	Morphological Plant Modeling: Unleashing Geometric and Topological Potential within the Plant Sciences. Frontiers in Plant Science, 2017, 8, 900.	3.6	61
11	Grasses suppress shoot-borne roots to conserve water during drought. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8861-8866.	7.1	111
12	Plant scientists: GM technology is safe. Science, 2016, 351, 824-824.	12.6	5
13	Environmental Control of Root System Biology. Annual Review of Plant Biology, 2016, 67, 619-642.	18.7	142
14	GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems. ELife, 2015, 4, .	6.0	212
15	Iron-dependent modifications of the flower transcriptome, proteome, metabolome, and hormonal content in an Arabidopsis ferritin mutant. Journal of Experimental Botany, 2013, 64, 2665-2688.	4.8	52
16	Nicotianamine Functions in the Phloem-Based Transport of Iron to Sink Organs, in Pollen Development and Pollen Tube Growth in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 2380-2400.	6.6	190
17	Oxidative stress is a consequence, not a cause, of aluminum toxicity in the forage legume <i>Lotus corniculatus</i> . New Phytologist, 2012, 193, 625-636.	7.3	66
18	Development of a New High-Performance Liquid Chromatography–Electrospray Ionization Time-of-Flight Mass Spectrometry Method for the Determination of Low Molecular Mass Organic Acids in Plant Tissue Extracts. Journal of Agricultural and Food Chemistry, 2011, 59, 6864-6870.	5.2	24

Rubén RellÃin-Ãŧvarez

#	Article	IF	CITATIONS
19	Metabolic response in roots of Prunus rootstocks submitted to iron chlorosis. Journal of Plant Physiology, 2011, 168, 415-423.	3.5	58
20	Carboxylate metabolism in sugar beet plants grown with excess Zn. Journal of Plant Physiology, 2011, 168, 730-733.	3.5	35
21	Metabolite profile changes in xylem sap and leaf extracts of strategy I plants in response to iron deficiency and resupply. Frontiers in Plant Science, 2011, 2, 66.	3.6	39
22	Towards a knowledge-based correction of iron chlorosis. Plant Physiology and Biochemistry, 2011, 49, 471-482.	5.8	275
23	Changes in the proteomic and metabolic profiles of Beta vulgaris root tips in response to iron deficiency and resupply. BMC Plant Biology, 2010, 10, 120.	3.6	105
24	Changes induced by two levels of cadmium toxicity in the 2-DE protein profile of tomato roots. Journal of Proteomics, 2010, 73, 1694-1706.	2.4	88
25	Identification of a Tri-Iron(III), Tri-Citrate Complex in the Xylem Sap of Iron-Deficient Tomato Resupplied with Iron: New Insights into Plant Iron Long-Distance Transport. Plant and Cell Physiology, 2010, 51, 91-102.	3.1	235
26	Growth, Yield, and Fruit Quality of Pepper Plants Amended with Two Sanitized Sewage Sludges. Journal of Agricultural and Food Chemistry, 2010, 58, 6951-6959.	5.2	46
27	Effect of oil refinery sludges on the growth and antioxidant system of alfalfa plants. Journal of Hazardous Materials, 2009, 171, 879-885.	12.4	60
28	Formation of metalâ€nicotianamine complexes as affected by pH, ligand exchange with citrate and metal exchange. A study by electrospray ionization timeâ€ofâ€flight mass spectrometry. Rapid Communications in Mass Spectrometry, 2008, 22, 1553-1562.	1.5	116
29	Rapid alteration of cellular redox homeostasis upon exposure to cadmium and mercury in alfalfa seedlings. New Phytologist, 2007, 176, 96-107.	7.3	144
30	Direct and simultaneous determination of reduced and oxidized glutathione and homoglutathione by liquid chromatography–electrospray/mass spectrometry in plant tissue extracts. Analytical Biochemistry, 2006, 356, 254-264.	2.4	93
31	Stress Responses of Zea mays to Cadmium and Mercury. Plant and Soil, 2006, 279, 41-50.	3.7	150
32	Cellular damage induced by cadmium and mercury in Medicago sativa. Journal of Experimental Botany, 2005, 56, 2239-2251.	4.8	277