Gary D Hammer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/881974/publications.pdf

Version: 2024-02-01

112 papers 11,899 citations

53 h-index 27406 106 g-index

129 all docs

129 docs citations

129 times ranked 13129 citing authors

#	Article	IF	CITATIONS
1	Update on Biology and Genomics of Adrenocortical Carcinomas: Rationale for Emerging Therapies. Endocrine Reviews, 2022, 43, 1051-1073.	20.1	9
2	Stem cell function and plasticity in the normal physiology of the adrenal cortex. Molecular and Cellular Endocrinology, 2021, 519, 111043.	3.2	15
3	\hat{I}^2 -catenin in adrenal zonation and disease. Molecular and Cellular Endocrinology, 2021, 522, 111120.	3.2	9
4	What Did We Learn from the Molecular Biology of Adrenal Cortical Neoplasia? From Histopathology to Translational Genomics. Endocrine Pathology, 2021, 32, 102-133.	9.0	33
5	Targeted RNAseq of Formalin-Fixed Paraffin-Embedded Tissue to Differentiate Among Benign and Malignant Adrenal Cortical Tumors. Hormone and Metabolic Research, 2020, 52, 607-613.	1.5	9
6	SAT-LB34 Repressive Epigenetic Programs Reinforce Steroidogenic Differentiation and Wnt/ \hat{l}^2 -Catenin Signaling in Aggressive Adrenocortical Carcinoma. Journal of the Endocrine Society, 2020, 4, .	0.2	1
7	New strategies for applying targeted therapies to adrenocortical carcinoma. Current Opinion in Endocrine and Metabolic Research, 2019, 8, 72-79.	1.4	6
8	Adjuvant Radiation Improves Recurrence-Free Survival and Overall Survival in Adrenocortical Carcinoma. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 3743-3750.	3.6	35
9	Regulation of stem and progenitor cells in the adrenal cortex. Current Opinion in Endocrine and Metabolic Research, 2019, 8, 66-71.	1.4	7
10	A ZNRF3-dependent Wnt/ \hat{l}^2 -catenin signaling gradient is required for adrenal homeostasis. Genes and Development, 2019, 33, 209-220.	5.9	74
11	Targeted Assessment of <i>GOS2</i> Methylation Identifies a Rapidly Recurrent, Routinely Fatal Molecular Subtype of Adrenocortical Carcinoma. Clinical Cancer Research, 2019, 25, 3276-3288.	7.0	51
12	An interview with Gary D Hammer, MD, PhD. International Journal of Endocrine Oncology, 2019, 6, IJE23.	0.4	1
13	Gary D Hammer on the improvement of patient care in endocrine neoplasia. International Journal of Endocrine Oncology, 2019, 6, IJE24.	0.4	1
14	Longitudinal patterns of recurrence in patients with adrenocortical carcinoma. Surgery, 2019, 165, 186-195.	1.9	47
15	Somatic mutations in adrenocortical carcinoma with primary aldosteronism or hyperreninemic hyperaldosteronism. Endocrine-Related Cancer, 2019, 26, 217-225.	3.1	10
16	Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell, 2018, 173, 321-337.e10.	28.9	2,111
17	Sonic Hedgehog and WNT Signaling Promote Adrenal Gland Regeneration in Male Mice. Endocrinology, 2018, 159, 579-596.	2.8	64
18	Therapeutic Targets for Adrenocortical Carcinoma in the Genomics Era. Journal of the Endocrine Society, 2018, 2, 1259-1274.	0.2	38

#	Article	IF	CITATIONS
19	Isolation, Fixation, and Immunofluorescence Imaging of Mouse Adrenal Glands. Journal of Visualized Experiments, 2018, , .	0.3	4
20	Drug repurposing using high-throughput screening identifies a promising drug combination to treat adrenocortical carcinoma. Oncotarget, 2018, 9, 33245-33246.	1.8	2
21	Cell signaling pathways in the adrenal cortex: Links to stem/progenitor biology and neoplasia. Molecular and Cellular Endocrinology, 2017, 445, 42-54.	3.2	21
22	Timing of adrenal regression controlled by synergistic interaction between Sf1 SUMOylation and Dax1. Development (Cambridge), 2017, 144, 3798-3807.	2.5	18
23	Adrenocortical carcinoma and succinate dehydrogenase gene mutations: an observational case series. European Journal of Endocrinology, 2017, 177, 439-444.	3.7	23
24	Double adrenocortical adenomas harboring independent KCNJ5 and PRKACA somatic mutations. European Journal of Endocrinology, 2016, 175, K1-K6.	3.7	37
25	ATR-101, a Selective and Potent Inhibitor of Acyl-CoA Acyltransferase 1, Induces Apoptosis in H295R Adrenocortical Cells and in the Adrenal Cortex of Dogs. Endocrinology, 2016, 157, 1775-1788.	2.8	65
26	Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma. Cancer Cell, 2016, 29, 723-736.	16.8	482
27	Nutritional conditions regulate transcriptional activity of SF-1 by controlling sumoylation and ubiquitination. Scientific Reports, 2016, 6, 19143.	3.3	12
28	Diagnosis and Treatment of Primary Adrenal Insufficiency: An Endocrine Society Clinical Practice Guideline. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 364-389.	3.6	1,166
29	Molecular Heterogeneity in Aldosterone-Producing Adenomas. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 999-1007.	3.6	74
30	Mouse models of adrenocortical tumors. Molecular and Cellular Endocrinology, 2016, 421, 82-97.	3.2	13
31	Development of Adrenal Cortex Zonation. Endocrinology and Metabolism Clinics of North America, 2015, 44, 243-274.	3.2	116
32	Hedgehog Signaling and Steroidogenesis. Annual Review of Physiology, 2015, 77, 105-129.	13.1	50
33	Adjuvant Radiation Therapy Improves Local Control After Surgical Resection in Patients WithÂLocalized Adrenocortical Carcinoma. International Journal of Radiation Oncology Biology Physics, 2015, 92, 252-259.	0.8	61
34	Linsitinib (OSI-906) versus placebo for patients with locally advanced or metastatic adrenocortical carcinoma: a double-blind, randomised, phase 3 study. Lancet Oncology, The, 2015, 16, 426-435.	10.7	272
35	Regulation of the adrenocortical stem cell niche: implications for disease. Nature Reviews Endocrinology, 2015, 11, 14-28.	9.6	73
36	Abstract 2976: Comprehensive Pan-Genomic characterization of adrenocortical carcinoma., 2015,,.		2

#	Article	lF	Citations
37	Transcutaneous biopsy of adrenocortical carcinoma is rarely helpful in diagnosis, potentially harmful, but does not affect patient outcome. European Journal of Endocrinology, 2014, 170, 829-835.	3.7	60
38	Adrenocortical Carcinoma. Endocrine Reviews, 2014, 35, 282-326.	20.1	671
39	Prognostic Role of Overt Hypercortisolism in Completely Operated Patients with Adrenocortical Cancer. European Urology, 2014, 65, 832-838.	1.9	121
40	Genetics of Adrenal Tumors. , 2014, , 313-321.		0
41	Adrenal Development., 2014, , 5-27.		1
42	Adjuvant Therapies and Patient and Tumor Characteristics Associated With Survival of Adult Patients With Adrenocortical Carcinoma. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 455-461.	3 . 6	159
43	An oncocytic adrenal tumour in a patient with Birtâ€Hoggâ€Dubé syndrome. Clinical Endocrinology, 2014, 80, 925-927.	2.4	14
44	Wnt Signaling Inhibits Adrenal Steroidogenesis by Cell-Autonomous and Non–Cell-Autonomous Mechanisms. Molecular Endocrinology, 2014, 28, 1471-1486.	3.7	72
45	Abiraterone Acetate to Lower Androgens in Women With Classic 21-Hydroxylase Deficiency. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 2763-2770.	3.6	64
46	Withanolides are Potent Novel Targeted Therapeutic Agents Against Adrenocortical Carcinomas. World Journal of Surgery, 2014, 38, 1343-1352.	1.6	24
47	The Combination of Insulin-Like Growth Factor Receptor 1 (IGF1R) Antibody Cixutumumab and Mitotane as a First-Line Therapy for Patients with Recurrent/Metastatic Adrenocortical Carcinoma: a Multi-institutional NCI-Sponsored Trial. Hormones and Cancer, 2014, 5, 232-239.	4.9	79
48	Genetics and epigenetics of adrenocortical tumors. Molecular and Cellular Endocrinology, 2014, 386, 67-84.	3. 2	88
49	Prevalence of Germline TP53 Mutations in a Prospective Series of Unselected Patients with Adrenocortical Carcinoma. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E119-E125.	3. 6	80
50	POD-1 binding to the E-box sequence inhibits SF-1 and StAR expression in human adrenocortical tumor cells. Molecular and Cellular Endocrinology, 2013, 371, 140-147.	3.2	28
51	Dicer Deficiency Reveals MicroRNAs Predicted to Control Gene Expression in the Developing Adrenal Cortex. Molecular Endocrinology, 2013, 27, 754-768.	3.7	27
52	Adrenocortical Carcinoma Is a Lynch Syndrome–Associated Cancer. Journal of Clinical Oncology, 2013, 31, 3012-3018.	1.6	153
53	Fetal adrenal capsular cells serve as progenitor cells for steroidogenic and stromal adrenocortical cell lineages in <i>M. musculus</i>). Development (Cambridge), 2013, 140, 4522-4532.	2.5	70
54	Progression to Adrenocortical Tumorigenesis in Mice and Humans through Insulin-Like Growth Factor 2 and \hat{I}^2 -Catenin. American Journal of Pathology, 2012, 181, 1017-1033.	3.8	154

#	Article	IF	CITATIONS
55	Upregulated JAG1 Enhances Cell Proliferation in Adrenocortical Carcinoma. Clinical Cancer Research, 2012, 18, 2452-2464.	7.0	33
56	Worsening Central Sarcopenia and Increasing Intraâ€Abdominal Fat Correlate with Decreased Survival in Patients with Adrenocortical Carcinoma. World Journal of Surgery, 2012, 36, 1509-1516.	1.6	70
57	Adrenal Cancer: Scientific Advances. Molecular and Cellular Endocrinology, 2012, 351, 1.	3.2	2
58	Adrenocortical stem and progenitor cells: Implications for adrenocortical carcinoma. Molecular and Cellular Endocrinology, 2012, 351, 2-11.	3.2	43
59	Mebendazole Monotherapy and Long-Term Disease Control in Metastatic Adrenocortical Carcinoma. Endocrine Practice, 2011, 17, e59-e62.	2.1	39
60	LRH-1 and Nanog regulate Dax1 transcription in mouse embryonic stem cells. Molecular and Cellular Endocrinology, 2011, 332, 116-124.	3.2	31
61	Adrenocortical stem and progenitor cells: Unifying model of two proposed origins. Molecular and Cellular Endocrinology, 2011, 336, 206-212.	3.2	60
62	Adrenal Cancer: Clinical Advances. Hormones and Cancer, 2011, 2, 323-323.	4.9	1
63	Evidence of Adrenal Failure in Aging Dax1-Deficient Mice. Endocrinology, 2011, 152, 3430-3439.	2.8	56
64	Aged PROP1 Deficient Dwarf Mice Maintain ACTH Production. PLoS ONE, 2011, 6, e28355.	2.5	13
65	Safety, tolerability, and pharmacokinetics of the anti-IGF-1R monoclonal antibody figitumumab in patients with refractory adrenocortical carcinoma. Cancer Chemotherapy and Pharmacology, 2010, 65, 765-773.	2.3	169
66	Proposal for modification of the ENSAT staging system for adrenocortical carcinoma using tumor grade. Langenbeck's Archives of Surgery, 2010, 395, 955-961.	1.9	65
67	Epigenetic silencing of engineered L1 retrotransposition events in human embryonic carcinoma cells. Nature, 2010, 466, 769-773.	27.8	157
68	Inhibin-A Antagonizes TGFÎ ² 2 Signaling by Down-Regulating Cell Surface Expression of the TGFÎ ² Coreceptor Betaglycan. Molecular Endocrinology, 2010, 24, 608-620.	3.7	36
69	Dax1 Up-Regulates Oct4 Expression in Mouse Embryonic Stem Cells via LRH-1 and SRA. Molecular Endocrinology, 2010, 24, 2281-2291.	3.7	52
70	GSK3 \hat{l}^2 and \hat{l}^2 -Catenin Modulate Radiation Cytotoxicity in Pancreatic Cancer. Neoplasia, 2010, 12, 357-365.	5.3	43
71	Dax-1 and Steroid Receptor RNA Activator (SRA) Function as Transcriptional Coactivators for Steroidogenic Factor 1 in Steroidogenesis. Molecular and Cellular Biology, 2009, 29, 1719-1734.	2.3	104
72	SUMOylation Inhibits SF-1 Activity by Reducing CDK7-Mediated Serine 203 Phosphorylation. Molecular and Cellular Biology, 2009, 29, 613-625.	2.3	59

#	Article	IF	Citations
73	In Search of Adrenocortical Stem and Progenitor Cells. Endocrine Reviews, 2009, 30, 241-263.	20.1	111
74	Preclinical Targeting of the Type I Insulin-Like Growth Factor Receptor in Adrenocortical Carcinoma. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 204-212.	3.6	177
75	Molecular Classification and Prognostication of Adrenocortical Tumors by Transcriptome Profiling. Clinical Cancer Research, 2009, 15, 668-676.	7.0	356
76	Genetic p53 Deficiency Partially Rescues the Adrenocortical Dysplasia Phenotype at the Expense of Increased Tumorigenesis. Cancer Cell, 2009, 15, 465-476.	16.8	53
77	Management of Adrenocortical Carcinoma. Journal of the National Comprehensive Cancer Network: JNCCN, 2009, 7, 752-759.	4.9	8
78	Adrenocortical Stem and Progenitor Cells: Implications for Cancer. , 2009, , 285-304.		0
79	Targeted disruption of \hat{l}^2 -catenin in Sf1-expressing cells impairs development and maintenance of the adrenal cortex. Development (Cambridge), 2008, 135, 2593-2602.	2.5	168
80	Evaluation of Telomere Length Maintenance Mechanisms in Adrenocortical Carcinoma. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 1442-1449.	3.6	45
81	Genetic Removal of Smad3 from Inhibin-Null Mice Attenuates Tumor Progression by Uncoupling Extracellular Mitogenic Signals from the Cell Cycle Machinery. Molecular Endocrinology, 2007, 21, 2440-2457.	3.7	54
82	Adrenocortical cells with stem/progenitor cell properties: Recent advances. Molecular and Cellular Endocrinology, 2007, 265-266, 10-16.	3.2	59
83	Telomere protection by mammalian Pot1 requires interaction with Tpp1. Nature Structural and Molecular Biology, 2007, 14, 754-761.	8.2	167
84	Novel polymorphisms and lack of mutations in the ACD gene in patients with ACTH resistance syndromes. Clinical Endocrinology, 2007, 67, 168-174.	2.4	5
85	The molecular genetics of adrenocortical carcinoma. Reviews in Endocrine and Metabolic Disorders, 2007, 8, 343-348.	5.7	52
86	Tpp1/Acd maintains genomic stability through a complex role in telomere protection. Chromosome Research, 2007, 15, 1001-1013.	2.2	37
87	IMAGe association and congenital adrenal hypoplasia: No disease-causing mutations found in the ACD gene. Molecular Genetics and Metabolism, 2006, 88, 66-70.	1.1	12
88	Origin and Identity of Adrenocortical Tumors in Inhibin Knockout Mice: Implications for Cellular Plasticity in the Adrenal Cortex. Molecular Endocrinology, 2006, 20, 2848-2863.	3.7	60
89	Reciprocal Regulation of a Glucocorticoid Receptor-Steroidogenic Factor-1 Transcription Complex on the Dax-1 Promoter by Glucocorticoids and Adrenocorticotropic Hormone in the Adrenal Cortex. Molecular Endocrinology, 2006, 20, 2711-2723.	3.7	98
90	Adrenocorticotropic Hormone-Mediated Signaling Cascades Coordinate a Cyclic Pattern of Steroidogenic Factor 1-Dependent Transcriptional Activation. Molecular Endocrinology, 2006, 20, 147-166.	3.7	69

#	Article	IF	Citations
91	Gonadectomy in mice of the inbred strain CE/J induces proliferation of sub-capsular adrenal cells expressing gonadal marker genes. Journal of Endocrinology, 2006, 190, 47-57.	2.6	34
92	Minireview: Transcriptional Regulation of Adrenocortical Development. Endocrinology, 2005, 146, 1018-1024.	2.8	120
93	Urogenital and caudal dysgenesis in adrenocortical dysplasia (acd) mice is caused by a splicing mutation in a novel telomeric regulator. Human Molecular Genetics, 2005, 14, 113-123.	2.9	111
94	Genetic analysis of adrenal absence: agenesis and aplasia. Trends in Endocrinology and Metabolism, 2005, 16, 458-468.	7.1	87
95	Mechanistic Roles of Inhibin as a Tumor Suppressor in the Adrenal Cortex. Endocrine Research, 2004, 30, 585-586.	1.2	4
96	Transsphenoidal Microsurgery for Cushing's Disease: Initial Outcome and Long-Term Results. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 6348-6357.	3.6	340
97	T-Cell Factor 4N (TCF-4N), a Novel Isoform of Mouse TCF-4, Synergizes with \hat{I}^2 -Catenin To Coactivate C/EBP \hat{I} ± and Steroidogenic Factor 1 Transcription Factors. Molecular and Cellular Biology, 2003, 23, 5366-5375.	2.3	67
98	Convergence of Wnt Signaling and Steroidogenic Factor-1 (SF-1) on Transcription of the Rat Inhibin \hat{l}_{\pm} Gene. Journal of Biological Chemistry, 2003, 278, 26572-26579.	3.4	87
99	Activin Induces x-Zone Apoptosis That Inhibits Luteinizing Hormone-Dependent Adrenocortical Tumor Formation in Inhibin-Deficient Mice. Molecular and Cellular Biology, 2003, 23, 3951-3964.	2.3	72
100	Interaction Between Dax-1 and Steroidogenic Factor-1 in Vivo: Increased Adrenal Responsiveness to ACTH in the Absence of Dax-1. Endocrinology, 2002, 143, 665-673.	2.8	76
101	Steroidogenic Factor-1 Is Essential for Compensatory Adrenal Growth Following Unilateral Adrenalectomy. Endocrinology, 2002, 143, 3122-3135.	2.8	84
102	Recent insights into organogenesis of the adrenal cortex. Trends in Endocrinology and Metabolism, 2002, 13, 200-208.	7.1	161
103	Ectopic pro-opiomelanocortin syndrome. Endocrinology and Metabolism Clinics of North America, 2002, 31, 191-234.	3.2	82
104	Interaction Between Dax-1 and Steroidogenic Factor-1 in Vivo: Increased Adrenal Responsiveness to ACTH in the Absence of Dax-1. Endocrinology, 2002, 143, 665-673.	2.8	24
105	Steroidogenic Factor-1 Is Essential for Compensatory Adrenal Growth Following Unilateral Adrenalectomy. Endocrinology, 2002, 143, 3122-3135.	2.8	18
106	Role of Phosphorylation, Gene Dosage and Dax-1 in SF-1 Mediated Steroidogenesis. Endocrine Research, 2000, 26, 985-994.	1.2	12
107	Steroidogenic Factor-1: Its Role in Endocrine Organ Development and Differentiation. Frontiers in Neuroendocrinology, 1999, 20, 199-223.	5.2	89
108	Phosphorylation of the Nuclear Receptor SF-1 Modulates Cofactor Recruitment. Molecular Cell, 1999, 3, 521-526.	9.7	358

#	Article	IF	CITATIONS
109	Raging Hormones in Development and Cancer. Cell, 1999, 96, 476-477.	28.9	0
110	Wilms' Tumor 1 and Dax-1 Modulate the Orphan Nuclear Receptor SF-1 in Sex-Specific Gene Expression. Cell, 1998, 93, 445-454.	28.9	546
111	Pituitary-Specific and Hormonally Regulated Gene Expression Directed by the Rat Proopiomelanocortin Promoter in Transgenic Mice. Molecular Endocrinology, 1990, 4, 1689-1697.	3.7	52
112	The effects of naloxone administered into the periaqueductal gray on shock-elicited freezing behavior in the rat. Behavioral and Neural Biology, 1986, 46, 189-195.	2.2	29