Magdala Tesauro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8819502/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	EuCRUSTâ€07: A new reference model for the European crust. Geophysical Research Letters, 2008, 35, .	4.0	213
2	<i>P</i> - and <i>S</i> -velocity anomalies in the upper mantle beneath Europe from tomographic inversion of ISC data. Geophysical Journal International, 2009, 179, 345-366.	2.4	163
3	A new thermal and rheological model of the European lithosphere. Tectonophysics, 2009, 476, 478-495.	2.2	105
4	Lithosphere tectonics and thermo-mechanical properties: An integrated modelling approach for Enhanced Geothermal Systems exploration in Europe. Earth-Science Reviews, 2010, 102, 159-206.	9.1	97
5	High resolution regional crustal models from irregularly distributed data: Application to Asia and adjacent areas. Tectonophysics, 2013, 602, 55-68.	2.2	77
6	Mantle Flow and Deforming Continents: From Indiaâ€Asia Convergence to Pacific Subduction. Tectonics, 2018, 37, 2887-2914.	2.8	72
7	Global strength and elastic thickness of the lithosphere. Global and Planetary Change, 2012, 90-91, 51-57.	3.5	66
8	The effective elastic thickness of the continental lithosphere: Comparison between rheological and inverse approaches. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	62
9	Glacial isostatic uplift of the European Alps. Nature Communications, 2016, 7, 13382.	12.8	62
10	An integrated gravity model for Europe's crust and upper mantle. Earth and Planetary Science Letters, 2010, 296, 195-209.	4.4	53
11	Global model for the lithospheric strength and effective elastic thickness. Tectonophysics, 2013, 602, 78-86.	2.2	51
12	Density, temperature, and composition of the North American lithosphere—New insights from a joint analysis of seismic, gravity, and mineral physics data: 1. Density structure of the crust and upper mantle. Geochemistry, Geophysics, Geosystems, 2014, 15, 4781-4807.	2.5	50
13	Lithospheric strength variations in Mainland China: Tectonic implications. Tectonics, 2016, 35, 2313-2333.	2.8	49
14	Variations of the lithospheric strength and elastic thickness in <scp>N</scp> orth <scp>A</scp> merica. Geochemistry, Geophysics, Geosystems, 2015, 16, 2197-2220.	2.5	48
15	How rigid is Europe's lithosphere?. Geophysical Research Letters, 2009, 36, .	4.0	47
16	Density, temperature, and composition of the <scp>N</scp> orth <scp>A</scp> merican lithosphere—New insights from a joint analysis of seismic, gravity, and mineral physics data: 2. Thermal and compositional model of the upper mantle. Geochemistry, Geophysics, Geosystems, 2014, 15, 4808-4830.	2.5	45
17	Applying local Green's functions to study the influence of the crustal structure on hydrological loading displacements. Journal of Geodynamics, 2015, 88, 14-22.	1.6	45
18	3D density model of the upper mantle of Asia based on inversion of gravity and seismic tomography data. Geochemistry, Geophysics, Geosystems, 2016, 17, 4457-4477.	2.5	43

MAGDALA TESAURO

8

#	Article	IF	CITATIONS
19	Continuous GPS and broad-scale deformation across the Rhine Graben and the Alps. International Journal of Earth Sciences, 2005, 94, 525-537.	1.8	42
20	NACr14: A 3D model for the crustal structure of the North American Continent. Tectonophysics, 2014, 631, 65-86.	2.2	42
21	3D strength and gravity anomalies of the European lithosphere. Earth and Planetary Science Letters, 2007, 263, 56-73.	4.4	41
22	Analysis of central western Europe deformation using GPS and seismic data. Journal of Geodynamics, 2006, 42, 194-209.	1.6	40
23	Contrasts of seismic velocity, density and strength across the Moho. Tectonophysics, 2013, 609, 437-455.	2.2	39
24	Threeâ€dimensional density model of the upper mantle in the Middle East: Interaction of diverse tectonic processes. Journal of Geophysical Research: Solid Earth, 2016, 121, 5349-5364.	3.4	38
25	Interference of lithospheric folding in western Central Asia by simultaneous Indian and Arabian plate indentation. Tectonophysics, 2013, 602, 176-193.	2.2	31
26	3â€Ð Density, Thermal, and Compositional Model of the Antarctic Lithosphere and Implications for Its Evolution. Geochemistry, Geophysics, Geosystems, 2019, 20, 688-707.	2.5	30
27	Upper plate deformation as marker for the Northern STEP fault of the Ionian slab (Tyrrhenian Sea,) Tj ETQq1 1 0.	784314 r 2.2	gBT_/Overloc 27
28	Reconsidering Effective Elastic Thickness Estimates by Incorporating the Effect of Sediments: A Case Study for Europe. Geophysical Research Letters, 2018, 45, 9523-9532.	4.0	23
29	From stretching to mantle exhumation in a triangular backarc basin (Vavilov basin, Tyrrhenian Sea,) Tj ETQq1 1 0	.784314 2.2	rgB <u>T</u> /Overlo
30	The Congo Basin: Stratigraphy and subsurface structure defined by regional seismic reflection, refraction and well data. Global and Planetary Change, 2021, 198, 103407.	3.5	18
31	Ductile crustal flow in Europe's lithosphere. Earth and Planetary Science Letters, 2011, 312, 254-265.	4.4	14
32	Thermal and Compositional Anomalies of the Australian Upper Mantle From Seismic and Gravity Data. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009305.	2.5	14
33	Strength and elastic thickness variations in the Arabian Plate: A combination of temperature, composition and strain rates of the lithosphere. Tectonophysics, 2018, 746, 398-411.	2.2	13
34	Marsili and Cefal $ ilde{A}^1$ basins: The evolution of a rift system in the southern Tyrrhenian Sea (Central) Tj ETQqO O O rg	gBT_/Over	lock 10 Tf 50
35	Refining the thermal structure of the European lithosphere by inversion of subsurface temperature data. Global and Planetary Change, 2018, 171, 18-47.	3.5	10

36The Arctic lithosphere: Thermo-mechanical structure and effective elastic thickness. Global and
Planetary Change, 2018, 171, 2-17.3.5

Magdala Tesauro

#	Article	IF	CITATIONS
37	A Thermo ompositional Model of the Cratonic Lithosphere of South America. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009307.	2.5	7
38	Strength variations of the Australian continent: Effects of temperature, strain rate, and rheological changes. Global and Planetary Change, 2020, 195, 103322.	3.5	6
39	Thermal and Rheological Model of the European Lithosphere. , 2009, , 71-101.		5
40	The Congo Basin: Subsurface structure interpreted using potential field data and constrained by seismic data. Global and Planetary Change, 2021, 205, 103611.	3.5	4
41	A Thermo ompositional Model of the African Cratonic Lithosphere. Geochemistry, Geophysics, Geosystems, 2022, 23, .	2.5	4
42	Phlogopite-pargasite coexistence in an oxygen reduced spinel-peridotite ambient. Scientific Reports, 2021, 11, 11829.	3.3	3
43	Thickness of sediments in the Congo basin based on the analysis of decompensative gravity anomalies. Journal of African Earth Sciences, 2021, 179, 104201.	2.0	3
44	3D Crustal Model of Western and Central Europe as a Basis for Modelling Mantle Structure. , 2009, , 39-69.		3