
José Carlos FernÃ;ndez-Checa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8819212/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GST-Perfringolysin O production for the localization andÂquantification of membrane cholesterol in human and mouse brain and liver. STAR Protocols, 2022, 3, 101068.	1.2	Ο
2	Sphingosine 1-Phosphate Receptor 4 Promotes Nonalcoholic Steatohepatitis by Activating NLRP3 Inflammasome. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 925-947.	4.5	22
3	Exploration of Digestive Diseases, where discovery and communication meet. , 2022, 1, 1-3.		Ο
4	Mitochondria and the NLRP3 Inflammasome in Alcoholic and Nonalcoholic Steatohepatitis. Cells, 2022, 11, 1475.	4.1	16
5	Sphingomyelin synthase 1 mediates hepatocyte pyroptosis to trigger non-alcoholic steatohepatitis. Gut, 2021, 70, 1954-1964.	12.1	71
6	GDF11 restricts aberrant lipogenesis and changes in mitochondrial structure and function in human hepatocellular carcinoma cells. Journal of Cellular Physiology, 2021, 236, 4076-4090.	4.1	11
7	MITOCHONDRIAL CHOLESTEROL AND CANCER. Seminars in Cancer Biology, 2021, 73, 76-85.	9.6	24
8	STARD1 promotes NASH-driven HCC by sustaining the generation of bile acids through the alternative mitochondrial pathway. Journal of Hepatology, 2021, 74, 1429-1441.	3.7	34
9	Dietary and Genetic Cholesterol Loading Rather Than Steatosis Promotes Liver Tumorigenesis and NASH-Driven HCC. Cancers, 2021, 13, 4091.	3.7	14
10	Acid ceramidase improves mitochondrial function and oxidative stress in Niemann-Pick type C disease by repressing STARD1 expression and mitochondrial cholesterol accumulation. Redox Biology, 2021, 45, 102052.	9.0	20
11	Advanced preclinical models for evaluation of drug-induced liver injury – consensus statement by the European Drug-Induced Liver Injury Network [PRO-EURO-DILI-NET]. Journal of Hepatology, 2021, 75, 935-959.	3.7	66
12	Sphingomyelinases and Liver Diseases. Biomolecules, 2020, 10, 1497.	4.0	33
13	Cholesterol Induces Nrf-2- and HIF-1 <i>α</i> -Dependent Hepatocyte Proliferation and Liver Regeneration to Ameliorate Bile Acid Toxicity in Mouse Models of NASH and Fibrosis. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-18.	4.0	22
14	STARD1 and NPC1 expression as pathological markers associated with astrogliosis in post-mortem brains from patients with Alzheimer's disease and Down syndrome. Aging, 2020, 12, 571-592.	3.1	13
15	Endoplasmic Reticulum Stress-Induced Upregulation of STARD1 Promotes Acetaminophen-Induced Acute Liver Failure. Gastroenterology, 2019, 157, 552-568.	1.3	85
16	Cholesterol enrichment in liver mitochondria impairs oxidative phosphorylation and disrupts the assembly of respiratory supercomplexes. Redox Biology, 2019, 24, 101214.	9.0	80
17	GDF11 exhibits tumor suppressive properties in hepatocellular carcinoma cells by restricting clonal expansion and invasion. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1540-1554.	3.8	22
18	Mitochondrial Cholesterol in Alzheimer's Disease and Niemann–Pick Type C Disease. Frontiers in Neurology, 2019, 10, 1168.	2.4	37

#	Article	IF	CITATIONS
19	Consumption of decaffeinated coffee protects against the development of early non-alcoholic steatohepatitis: Role of intestinal barrier function. Redox Biology, 2019, 21, 101092.	9.0	23
20	The 2-oxoglutarate carrier promotes liver cancer by sustaining mitochondrial CSH despite cholesterol loading. Redox Biology, 2018, 14, 164-177.	9.0	59
21	Mitochondrial Oxidative Stress and Antioxidants Balance in Fatty Liver Disease. Hepatology Communications, 2018, 2, 1425-1439.	4.3	122
22	Zinc mitigates renal ischemiaâ€reperfusion injury in rats by modulating oxidative stress, endoplasmic reticulum stress, and autophagy. Journal of Cellular Physiology, 2018, 233, 8677-8690.	4.1	56
23	Mitochondrial–Lysosomal Axis in Acetaminophen Hepatotoxicity. Frontiers in Pharmacology, 2018, 9, 453.	3.5	79
24	Cholesterol impairs autophagy-mediated clearance of amyloid beta while promoting its secretion. Autophagy, 2018, 14, 1129-1154.	9.1	97
25	The effect of zinc acexamate on oxidative stress, inflammation and mitochondria induced apoptosis in rat model of renal warm ischemia. Biomedicine and Pharmacotherapy, 2018, 105, 573-581.	5.6	15
26	Mitochondrial GSH replenishment as a potential therapeutic approach for Niemann Pick type C disease. Redox Biology, 2017, 11, 60-72.	9.0	55
27	Protective role of endogenous plasmalogens against hepatic steatosis and steatohepatitis in mice. Hepatology, 2017, 66, 416-431.	7.3	61
28	MLN64 induces mitochondrial dysfunction associated with increased mitochondrial cholesterol content. Redox Biology, 2017, 12, 274-284.	9.0	56
29	Lysosomal and Mitochondrial Liaisons in Niemann-Pick Disease. Frontiers in Physiology, 2017, 8, 982.	2.8	62
30	Intracellular Cholesterol Trafficking and Impact in Neurodegeneration. Frontiers in Molecular Neuroscience, 2017, 10, 382.	2.9	103
31	Liver Cholesterol Overload Aggravates Obstructive Cholestasis by Inducing Oxidative Stress and Premature Death in Mice. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-13.	4.0	26
32	Mitochondrial Cholesterol and the Paradox in Cell Death. Handbook of Experimental Pharmacology, 2016, 240, 189-210.	1.8	13
33	Mitochondria, cholesterol and cancer cell metabolism. Clinical and Translational Medicine, 2016, 5, 22.	4.0	127
34	Melatoninâ€induced increase in sensitivity of human hepatocellular carcinoma cells to sorafenib is associated with reactive oxygen species production and mitophagy. Journal of Pineal Research, 2016, 61, 396-407.	7.4	114
35	Lysosomal Cholesterol Accumulation Sensitizes To Acetaminophen Hepatotoxicity by Impairing Mitophagy. Scientific Reports, 2016, 5, 18017.	3.3	49
36	Cysteine cathepsins control hepatic NF-κB-dependent inflammation via sirtuin-1 regulation. Cell Death and Disease, 2016, 7, e2464-e2464.	6.3	42

#	Article	IF	CITATIONS
37	Targeting glucosylceramide synthase upregulation reverts sorafenib resistance in experimental hepatocellular carcinoma. Oncotarget, 2016, 7, 8253-8267.	1.8	40
38	Angiogenin Secretion From Hepatoma Cells Activates Hepatic Stellate Cells To Amplify A Self-Sustained Cycle Promoting Liver Cancer. Scientific Reports, 2015, 5, 7916.	3.3	42
39	Ceramide metabolism regulates autophagy and apoptotic cell death induced by melatonin in liver cancer cells. Journal of Pineal Research, 2015, 59, 178-189.	7.4	82
40	Oxidative Stress in Nonalcoholic Fatty Liver Disease. Oxidative Stress in Applied Basic Research and Clinical Practice, 2015, , 279-308.	0.4	1
41	Augmenter of Liver Regeneration Links Mitochondrial Function to Steatohepatitis and Hepatocellular Carcinoma. Gastroenterology, 2015, 148, 285-288.	1.3	6
42	Glycosphingolipids and cell death: one aim, many ways. Apoptosis: an International Journal on Programmed Cell Death, 2015, 20, 607-620.	4.9	49
43	Oxidative Stress and Liver Ischemia–Reperfusion Injury. Oxidative Stress in Applied Basic Research and Clinical Practice, 2015, , 149-170.	0.4	2
44	Acid sphingomyelinase-ceramide system in steatohepatitis: A novel target regulating multiple pathways. Journal of Hepatology, 2015, 62, 219-233.	3.7	66
45	Sab (Sh3bp5) dependence of JNK mediated inhibition of mitochondrial respiration in palmitic acid induced hepatocyte lipotoxicity. Journal of Hepatology, 2015, 62, 1367-1374.	3.7	108
46	Gas6/Axl pathway is activated in chronic liver disease and its targeting reduces fibrosis via hepatic stellate cell inactivation. Journal of Hepatology, 2015, 63, 670-678.	3.7	104
47	Myristic acid potentiates palmitic acid-induced lipotoxicity and steatohepatitis associated with lipodystrophy by sustaning de novo ceramide synthesis. Oncotarget, 2015, 6, 41479-41496.	1.8	78
48	Role of Sphingolipids in Liver Cancer. , 2015, , 189-209.		0
49	Glutathione and mitochondria. Frontiers in Pharmacology, 2014, 5, 151.	3.5	401
50	Endoplasmic Reticulum Stress Mediates Amyloid Î ² Neurotoxicity via Mitochondrial Cholesterol Trafficking. American Journal of Pathology, 2014, 184, 2066-2081.	3.8	85
51	Mitochondrial cholesterol accumulation in alcoholic liver disease: Role of ASMase and endoplasmic reticulum stress. Redox Biology, 2014, 3, 100-108.	9.0	44
52	ASMase regulates autophagy and lysosomal membrane permeabilization and its inhibition prevents early stage non-alcoholic steatohepatitis. Journal of Hepatology, 2014, 61, 1126-1134.	3.7	89
53	JNK interaction with Sab mediates ER stress induced inhibition of mitochondrial respiration and cell death. Cell Death and Disease, 2014, 5, e989-e989.	6.3	134
54	Glutathione in Mammalian Biology. , 2014, , 617-644.		3

Glutathione in Mammalian Biology. , 2014, , 617-644. 54

#	Article	IF	CITATIONS
55	Mitochondrial dysfunction in non-alcoholic fatty liver disease and insulin resistance: Cause or consequence?. Free Radical Research, 2013, 47, 854-868.	3.3	82
56	APP/PS1 mice overexpressing SREBP-2 exhibit combined Aβ accumulation and tau pathology underlying Alzheimer's disease. Human Molecular Genetics, 2013, 22, 3460-3476.	2.9	98
57	Role of Mitochondria in Alcoholic Liver Disease. Current Pathobiology Reports, 2013, 1, 159-168.	3.4	51
58	Mitochondrial glutathione: Features, regulation and role in disease. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 3317-3328.	2.4	160
59	ASMase is required for chronic alcohol induced hepatic endoplasmic reticulum stress and mitochondrial cholesterol loading. Journal of Hepatology, 2013, 59, 805-813.	3.7	89
60	To binge or not to binge: Binge drinking disrupts glucose homeostasis by impairing hypothalamic but not liver insulin signaling. Hepatology, 2013, 57, 2535-2538.	7.3	4
61	Cathepsin B Overexpression Due to Acid Sphingomyelinase Ablation Promotes Liver Fibrosis in Niemann-Pick Disease. Journal of Biological Chemistry, 2012, 287, 1178-1188.	3.4	45
62	Reply to: "2′,7′-Dichlorofluorescein is not a probe for the detection of reactive oxygen and nitrogen species― Journal of Hepatology, 2012, 56, 1216-1217.	3.7	0
63	Mitochondrial GSH determines the toxic or therapeutic potential of superoxide scavenging in steatohepatitis. Journal of Hepatology, 2012, 57, 852-859.	3.7	70
64	Anti-Cancer Agents in Medicinal Chemistry, 2012, 12, 283-284.	1.7	0
65	Hepatocarcinogenesis and Ceramide/Cholesterol Metabolism. Anti-Cancer Agents in Medicinal Chemistry, 2012, 12, 364-375.	1.7	30
66	Statins and Protein Prenylation in Cancer Cell Biology and Therapy. Anti-Cancer Agents in Medicinal Chemistry, 2012, 12, 303-315.	1.7	49
67	Targeting cholesterol at different levels in the mevalonate pathway protects fatty liver against ischemia–reperfusion injury. Journal of Hepatology, 2011, 54, 1002-1010.	3.7	54
68	Metabolic Therapy: Lessons from Liver Diseases. Current Pharmaceutical Design, 2011, 17, 3933-3944.	1.9	19
69	Mitochondrial Cholesterol: A Connection Between Caveolin, Metabolism, and Disease. Traffic, 2011, 12, 1483-1489.	2.7	45
70	Caveolin-1 Deficiency Causes Cholesterol-Dependent Mitochondrial Dysfunction and Apoptotic Susceptibility. Current Biology, 2011, 21, 681-686.	3.9	175
71	Critical role of tumor necrosis factor receptor 1, but not 2, in hepatic stellate cell proliferation, extracellular matrix remodeling, and liver fibrogenesis. Hepatology, 2011, 54, 319-327.	7.3	107
72	Probiotic Sonicates Selectively Induce Mucosal Immune Cells Apoptosis through Ceramide Generation via Neutral Sphingomyelinase. PLoS ONE, 2011, 6, e16953.	2.5	23

#	Article	IF	CITATIONS
73	Cholesterol regulates mitochondrial raft-like domains during TNF/Fas-mediated hepatocellular apoptosis. Chemistry and Physics of Lipids, 2010, 163, S59.	3.2	0
74	Cholesterol and peroxidized cardiolipin in mitochondrial membrane properties, permeabilization and cell death. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1217-1224.	1.0	90
75	Growth arrest-specific protein 6 is hepatoprotective against murine ischemia/reperfusion injury. Hepatology, 2010, 52, 1371-1379.	7.3	70
76	Alcohol, Signaling, and ECM Turnover. Alcoholism: Clinical and Experimental Research, 2010, 34, 4-18.	2.4	33
77	Specific Contribution of Methionine and Choline in Nutritional Nonalcoholic Steatohepatitis. Journal of Biological Chemistry, 2010, 285, 18528-18536.	3.4	215
78	Oxidative Stress and Altered Mitochondrial Function in Neurodegenerative Diseases: Lessons From Mouse Models. CNS and Neurological Disorders - Drug Targets, 2010, 9, 439-454.	1.4	79
79	Acidic Sphingomyelinase Controls Hepatic Stellate Cell Activation and in Vivo Liver Fibrogenesis. American Journal of Pathology, 2010, 177, 1214-1224.	3.8	78
80	Redox Control of Liver Function in Health and Disease. Antioxidants and Redox Signaling, 2010, 12, 1295-1331.	5.4	155
81	Apoptosis and Mitochondria. , 2010, , 439-453.		2
82	GD3 Synthase Overexpression Sensitizes Hepatocarcinoma Cells to Hypoxia and Reduces Tumor Growth by Suppressing the cSrc/NF-κB Survival Pathway. PLoS ONE, 2009, 4, e8059.	2.5	25
83	Mitochondrial Cholesterol Loading Exacerbates Amyloid Î ² Peptide-Induced Inflammation and Neurotoxicity. Journal of Neuroscience, 2009, 29, 6394-6405.	3.6	134
84	Cathepsins B and D drive hepatic stellate cell proliferation and promote their fibrogenic potential. Hepatology, 2009, 49, 1297-1307.	7.3	80
85	Brain mitochondrial alterations after chronic alcohol consumption. Journal of Physiology and Biochemistry, 2009, 65, 305-312.	3.0	19
86	Mitochondria, cholesterol and amyloid β peptide: a dangerous trio in Alzheimer disease. Journal of Bioenergetics and Biomembranes, 2009, 41, 417-423.	2.3	50
87	Mitochondrial <i>S</i> â€Adenosylâ€ <scp>l</scp> â€Methionine Transport is Insensitive to Alcoholâ€Mediated Changes in Membrane Dynamics. Alcoholism: Clinical and Experimental Research, 2009, 33, 1169-1180.	2.4	23
88	Enhanced free cholesterol, SREBP-2 and StAR expression in human NASH. Journal of Hepatology, 2009, 50, 789-796.	3.7	296
89	Mitochondrial Glutathione, a Key Survival Antioxidant. Antioxidants and Redox Signaling, 2009, 11, 2685-2700.	5.4	777
90	Reactive Oxygen Species Mediate Liver Injury Through Parenchymal Nuclear Factor-κB Inactivation in Prolonged Ischemia/Reperfusion. American Journal of Pathology, 2009, 174, 1776-1785.	3.8	82

#	Article	IF	CITATIONS
91	Mitochondrial cholesterol in health and disease. Histology and Histopathology, 2009, 24, 117-32.	0.7	79
92	Cholesterol and sphingolipids in alcohol-induced liver injury. Journal of Gastroenterology and Hepatology (Australia), 2008, 23, S9-S15.	2.8	29
93	Mechanism of Mitochondrial Glutathione-Dependent Hepatocellular Susceptibility to TNF Despite NF-κB Activation. Gastroenterology, 2008, 134, 1507-1520.	1.3	96
94	Mitochondrial Cholesterol Contributes to Chemotherapy Resistance in Hepatocellular Carcinoma. Cancer Research, 2008, 68, 5246-5256.	0.9	219
95	Pharmacological Modulation of Sphingolipids and Role in Disease and Cancer Cell Biology. Mini-Reviews in Medicinal Chemistry, 2007, 7, 371-382.	2.4	32
96	Neutral sphingomyelinase-induced ceramide triggers germinal vesicle breakdown and oxidant-dependent apoptosis in Xenopus laevis oocytes. Journal of Lipid Research, 2007, 48, 1924-1935.	4.2	20
97	Dual Role of Mitochondrial Reactive Oxygen Species in Hypoxia Signaling: Activation of Nuclear Factor-κB via c-SRC– and Oxidant-Dependent Cell Death. Cancer Research, 2007, 67, 7368-7377.	0.9	204
98	Mitochondrial dysfunction in COPD patients with low body mass index. European Respiratory Journal, 2007, 29, 643-650.	6.7	127
99	Pharmacological inhibition or small interfering RNA targeting acid ceramidase sensitizes hepatoma cells to chemotherapy and reduces tumor growth in vivo. Oncogene, 2007, 26, 905-916.	5.9	95
100	Redox regulation of hepatocyte apoptosis. Journal of Gastroenterology and Hepatology (Australia), 2007, 22, S38-S42.	2.8	53
101	Sphingolipid signalling and liver diseases. Liver International, 2007, 27, 440-450.	3.9	78
102	Sphingolipids and cell death. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 923-939.	4.9	203
103	Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metabolism, 2006, 4, 185-198.	16.2	537
104	Systemic effects of cigarette smoke exposure in the guinea pig. Respiratory Medicine, 2006, 100, 1186-1194.	2.9	43
105	Mitochondrial glutathione: Hepatocellular survival–death switch. Journal of Gastroenterology and Hepatology (Australia), 2006, 21, S3-6.	2.8	103
106	Critical role of acidic sphingomyelinase in murine hepatic ischemia-reperfusion injury. Hepatology, 2006, 44, 561-572.	7.3	112
107	Differential modulation of interleukin 8 by interleukin 4 and interleukin 10 in HepG2 cells treated with acetaldehyde. Liver International, 2005, 25, 122-130.	3.9	12
108	Ceramide, Tumor Necrosis Factor and Alcohol-Induced Liver Disease. Alcoholism: Clinical and Experimental Research, 2005, 29, 158S-161S.	2.4	18

#	Article	IF	CITATIONS
109	Hepatic mitochondrial glutathione: transport and role in disease and toxicity. Toxicology and Applied Pharmacology, 2005, 204, 263-273.	2.8	248
110	Critical Role of Mitochondrial Glutathione in the Survival of Hepatocytes during Hypoxia. Journal of Biological Chemistry, 2005, 280, 3224-3232.	3.4	93
111	Apoptosis and Mitochondria. , 2005, , 367-376.		1
112	Ceramide, tumor necrosis factor and alcohol-induced liver disease. Alcoholism: Clinical and Experimental Research, 2005, 29, 151S-157S.	2.4	14
113	Reply:. Hepatology, 2004, 39, 571-572.	7.3	0
114	A hidden face of hope for the liver. Journal of Hepatology, 2004, 41, 888-889.	3.7	0
115	Glutathione Depletion Impairs Myogenic Differentiation of Murine Skeletal Muscle C2C12 Cells through Sustained NF-ήB Activation. American Journal of Pathology, 2004, 165, 719-728.	3.8	105
116	Mitochondrial permeability transition induced by reactive oxygen species is independent of cholesterol-regulated membrane fluidity. FEBS Letters, 2004, 560, 63-68.	2.8	36
117	Acidic sphingomyelinase downregulates the liver-specific methionine adenosyltransferase 1A, contributing to tumor necrosis factor–induced lethal hepatitis. Journal of Clinical Investigation, 2004, 113, 895-904.	8.2	32
118	Acidic sphingomyelinase downregulates the liver-specific methionine adenosyltransferase 1A, contributing to tumor necrosis factor–induced lethal hepatitis. Journal of Clinical Investigation, 2004, 113, 895-904.	8.2	61
119	Glycosphingolipids and mitochondria: Role in apoptosis and disease. Glycoconjugate Journal, 2003, 20, 579-588.	2.7	70
120	Sensitivity of the 2-oxoglutarate carrier to alcohol intake contributes to mitochondrial glutathione depletion. Hepatology, 2003, 38, 692-702.	7.3	127
121	Role of Apoptosis in Alcoholic Liver Injury. Alcoholism: Clinical and Experimental Research, 2003, 27, 1207-1212.	2.4	38
122	Acetaldehyde impairs mitochondrial glutathione transport in HepG2 cells through endoplasmic reticulum stress. Gastroenterology, 2003, 124, 708-724.	1.3	155
123	Redox regulation and signaling lipids in mitochondrial apoptosis. Biochemical and Biophysical Research Communications, 2003, 304, 471-479.	2.1	115
124	Cholesterol Impairs the Adenine Nucleotide Translocator-mediated Mitochondrial Permeability Transition through Altered Membrane Fluidity. Journal of Biological Chemistry, 2003, 278, 33928-33935.	3.4	120
125	Increased tumour necrosis factorâ€i± plasma levels during moderate-intensity exercise in COPD patients. European Respiratory Journal, 2003, 21, 789-794.	6.7	143
126	Alcohol-induced liver disease: when fat and oxidative stress meet. Annals of Hepatology, 2003, 2, 69-75.	1.5	33

#	Article	IF	CITATIONS
127	Role of Apoptosis in Alcoholic Liver Injury. Alcoholism: Clinical and Experimental Research, 2003, 27, 1207-1212.	2.4	2
128	Defective TNF-α–mediated hepatocellular apoptosis and liver damage in acidic sphingomyelinase knockout mice. Journal of Clinical Investigation, 2003, 111, 197-208.	8.2	200
129	Defective TNF-α–mediated hepatocellular apoptosis and liver damage in acidic sphingomyelinase knockout mice. Journal of Clinical Investigation, 2003, 111, 197-208.	8.2	32
130	Alcohol-induced liver disease: when fat and oxidative stress meet. Annals of Hepatology, 2003, 2, 69-75.	1.5	11
131	Mitochondria in Alcoholic Liver Disease. , 2002, , 361-377.		Ο
132	Ganglioside GD3 Sensitizes Human Hepatoma Cells to Cancer Therapy. Journal of Biological Chemistry, 2002, 277, 49870-49876.	3.4	47
133	Trafficking of Ganglioside GD3 to Mitochondria by Tumor Necrosis Factor-α. Journal of Biological Chemistry, 2002, 277, 36443-36448.	3.4	133
134	PGE 1 Protection against Apoptosis Induced by d -galactosamine is Not Related to the Modulation of Intracellular Free Radical Production in Primary Culture of Rat Hepatocytes. Free Radical Research, 2002, 36, 345-355.	3.3	67
135	Divergent role of ceramide generated by exogenous sphingomyelinases on NF-κB activation and apoptosis in human colon HT-29 cells. FEBS Letters, 2002, 526, 15-20.	2.8	22
136	Ceramide generated by acidic sphingomyelinase contributes to tumor necrosis factor-α-mediated apoptosis in human colon HT-29 cells through glycosphingolipids formation. FEBS Letters, 2002, 526, 135-141.	2.8	60
137	S-Adenosyl-l-methionine and mitochondrial reduced glutathione depletion in alcoholic liver disease. Alcohol, 2002, 27, 179-183.	1.7	82
138	Identification and Functional Analysis of Mutations in FAD-Binding Domain of Mitochondrial Glycerophosphate Dehydrogenase in Caucasian Patients with Type 2 Diabetes Mellitus. Endocrine, 2001, 16, 39-42.	2.2	8
139	Tauroursodeoxycholic acid protects hepatocytes from ethanol-fed rats against tumor necrosis factor–induced cell death by replenishing mitochondrial glutathione. Hepatology, 2001, 34, 964-971.	7.3	75
140	How Is the Liver Primed or Sensitized for Alcoholic Liver Disease?. Alcoholism: Clinical and Experimental Research, 2001, 25, 171S-181S.	2.4	50
141	Ganglioside GD3 enhances apoptosis by suppressing the nuclear factor-κB-dependent survival pathway. FASEB Journal, 2001, 15, 1068-1070.	0.5	80
142	Reduced Muscle Redox Capacity after Endurance Training in Patients with Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2001, 164, 1114-1118.	5.6	158
143	How Is the Liver Primed or Sensitized for Alcoholic Liver Disease?. Alcoholism: Clinical and Experimental Research, 2001, 25, 171S-181S.	2.4	36
144	Human placenta sphingomyelinase, an exogenous acidic pH-optimum sphingomyelinase, induces oxidative stress, glutathione depletion, and apoptosis in rat hepatocytes. Hepatology, 2000, 32, 56-65.	7.3	55

#	Article	IF	CITATIONS
145	Direct interaction of GD3 ganglioside with mitochondria generates reactive oxygen species followed by mitochondrial permeability transition, cytochrome c release, and caspase activation. FASEB Journal, 2000, 14, 847-858.	0.5	187
146	Enhanced DNA Binding and Activation of Transcription Factors NF-κB and AP-1 by Acetaldehyde in HEPG2 Cells. Journal of Biological Chemistry, 2000, 275, 14684-14690.	3.4	55
147	Replenishment of Glutathione Levels Improves Mucosal Function in Experimental Acute Colitis. Laboratory Investigation, 2000, 80, 735-744.	3.7	99
148	Differential role of ethanol and acetaldehyde in the induction of oxidative stress in HEP G2 cells: Effect on transcription factors AP-1 and NF-κB. Hepatology, 1999, 30, 1473-1480.	7.3	82
149	Hepatocellular oxidative stress and initial graft injury in human liver transplantation. Journal of Hepatology, 1999, 31, 921-927.	3.7	42
150	VCAM-1 and ICAM-1 mediate leukocyte-endothelial cell adhesion in rat experimental colitis. Gastroenterology, 1999, 116, 874-883.	1.3	181
151	Oxidative stress: Role of mitochondria and protection by glutathione. BioFactors, 1998, 8, 7-11.	5.4	170
152	HEPATIC MITOCHONDRIAL GLUTATHIONE DEPLETION AND CYTOKINE-MEDIATED ALCOHOLIC LIVER DISEASE. Alcoholism: Clinical and Experimental Research, 1998, 22, 763-765.	2.4	1
153	Effects of steroid treatment on activation of nuclear factor κB in patients with inflammatory bowel disease. British Journal of Pharmacology, 1998, 124, 431-433.	5.4	103
154	Chronic Ethanol Feeding Induces Cellular Antioxidants Decrease and Oxidative Stress in Rat Peripheral Nerves. Effect of S-Adenosyl-I-Methionine and N-Acetyl-I-Cysteine. Free Radical Biology and Medicine, 1998, 25, 365-368.	2.9	42
155	Oxidative damage of mitochondrial and nuclear DNA induced by ionizing radiation in human hepatoblastoma cells. International Journal of Radiation Oncology Biology Physics, 1998, 42, 191-203.	0.8	86
156	Transcriptional regulation of the heavy subunit chain of γâ€glutamylcysteine synthetase by ionizing radiation. FEBS Letters, 1998, 427, 15-20.	2.8	57
157	Selective glutathione depletion of mitochondria by ethanol sensitizes hepatocytes to tumor necrosis factor. Gastroenterology, 1998, 115, 1541-1551.	1.3	349
158	Mitochondrial Glutathione: Importance and Transport. Seminars in Liver Disease, 1998, 18, 389-401.	3.6	203
159	Tumor Necrosis Factor Increases Hepatocellular Glutathione by Transcriptional Regulation of the Heavy Subunit Chain of Î ³ -Glutamylcysteine Synthetase. Journal of Biological Chemistry, 1997, 272, 30371-30379.	3.4	133
160	Liver and lens glutathione and cysteine regulation in galactose-fed guinea pigs. Current Eye Research, 1997, 16, 365-371.	1.5	6
161	Direct Effect of Ceramide on the Mitochondrial Electron Transport Chain Leads to Generation of Reactive Oxygen Species. Journal of Biological Chemistry, 1997, 272, 11369-11377.	3.4	727
162	Gastric mucosal damage in experimental diabetes in rats: Role of endogenous glutathione. Gastroenterology, 1997, 112, 855-863.	1.3	36

#	ARTICLE	IF	CITATIONS
163	Qualitative and Quantitative Changes in Skeletal Muscle mtDNA and Expression of Mitochondrial-Encoded Genes in the Human Aging Process. Biochemical and Molecular Medicine, 1997, 62, 165-171.	1.4	77
164	Transport of reduced glutathione in hepatic mitochondria and mitoplasts from ethanol-treated rats: Effect of membrane physical properties andS-adenosyl-L-methionine. Hepatology, 1997, 26, 699-708.	7.3	151
165	Evidence that interference with binding to hepatic cytosol binders can inhibit bile acid excretion in rats. Hepatology, 1996, 23, 1642-1649.	7.3	12
166	Conformationally restricted analogues of methionine: Synthesis of chiral 3-Amino-5-methylthio-2-piperidones. Tetrahedron, 1996, 52, 7727-7736.	1.9	20
167	Plasma Membrane and Mitochondrial Transport of Hepatic Reduced Glutathione. Seminars in Liver Disease, 1996, 16, 147-158.	3.6	42
168	FeedingS-adenosyl-l-methionine attenuates both ethanol-induced depletion of mitochondrial glutathione and mitochondrial dysfunction in periportal and perivenous rat hepatocytes. Hepatology, 1995, 21, 207-214.	7.3	193
169	Evidence That the Rat Hepatic Mitochondrial Carrier Is Distinct from the Sinusoidal and Canalicular Transporters for Reduced Glutathione. Journal of Biological Chemistry, 1995, 270, 15946-15949.	3.4	48
170	Expression cloning of the cDNA for a polypeptide associated with rat hepatic sinusoidal reduced glutathione transport: characteristics and comparison with the canalicular transporter Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 1495-1499.	7.1	37
171	Feeding S-adenosylmethionine attenuates both ethanol-induced depletion of mitochondrial glutathione and mitochondrial dysfunction in periportal and perivenous rat hepatocytes*1. Hepatology, 1995, 21, 207-214.	7.3	29
172	Expression cloning of a rat hepatic reduced glutathione transporter with canalicular characteristics Journal of Clinical Investigation, 1994, 93, 1841-1845.	8.2	46
173	Effect of chronic ethanol feeding on glutathione and functional integrity of mitochondria in periportal and perivenous rat hepatocytes Journal of Clinical Investigation, 1994, 94, 193-201.	8.2	197
174	A Simple Technique to Determine Glutathione (GSH) Levels and Synthesis in Ocular Tissues as GSH-bimane Adduct: Application to Normal and Galactosemic Guinea-pigs. Experimental Eye Research, 1993, 56, 45-50.	2.6	29
175	Mitochondrial glutathione depletion in alcoholic liver disease. Alcohol, 1993, 10, 469-475.	1.7	142
176	Hepatic mitochondrial glutathione depletion and progression of experimental alcoholic liver disease in rats. Hepatology, 1992, 16, 1423-1427.	7.3	220
177	Effect of indomethacin on the uptake, metabolism and excretion of 3-oxocholic acid: Studies in isolated hepatocytes and perfused rat liver. Lipids and Lipid Metabolism, 1991, 1084, 247-250.	2.6	8
178	Impaired uptake of glutathione by hepatic mitochondria from chronic ethanol-fed rats. Tracer kinetic studies in vitro and in vivo and susceptibility to oxidant stress Journal of Clinical Investigation, 1991, 87, 397-405.	8.2	227
179	The use of monochlorobimane to determine hepatic GSH levels and synthesis. Analytical Biochemistry, 1990, 190, 212-219.	2.4	205
180	Effects of chronic ethanol feeding on rat hepatocytic glutathione. Relationship of cytosolic glutathione to efflux and mitochondrial sequestration Journal of Clinical Investigation, 1989, 83, 1247-1252.	8.2	86

#	Article	IF	CITATIONS
181	Inhibition of glutathione efflux in the perfused rat liver and isolated hepatocytes by organic anions and bilirubin. Kinetics, sidedness, and molecular forms Journal of Clinical Investigation, 1988, 82, 608-616.	8.2	45
182	Effect of chronic ethanol feeding on rat hepatocytic glutathione. Compartmentation, efflux, and response to incubation with ethanol Journal of Clinical Investigation, 1987, 80, 57-62.	8.2	117
183	The fluidity of liver plasma membranes from patients with different types of liver injury. Hepatology, 1986, 6, 714-717.	7.3	28
184	Functional properties of isolated hepatocytes from ethanol-treated rat liver. Hepatology, 1985, 5, 677-682.	7.3	19
185	Free Cholesterol $\hat{a} \in \mathcal{A}$ A Double-Edge Sword in Alzheimer Disease. , 0, , .		2