Alexis Maizel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/881858/publications.pdf

Version: 2024-02-01

		172457	189892
51	4,014	29	50
papers	citations	h-index	g-index
67	67	67	5033
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	miR390, <i>Arabidopsis TAS3</i> tasiRNAs, and Their <i>AUXIN RESPONSE FACTOR</i> Targets Define an Autoregulatory Network Quantitatively Regulating Lateral Root Growth. Plant Cell, 2010, 22, 1104-1117.	6.6	512
2	Novel long non-protein coding RNAs involved in <i>Arabidopsis</i> differentiation and stress responses. Genome Research, 2009, 19, 57-69.	5.5	390
3	A Spatial Accommodation by Neighboring Cells Is Required for Organ Initiation in <i>Arabidopsis</i> Science, 2014, 343, 178-183.	12.6	262
4	Lateral root morphogenesis is dependent on the mechanical properties of the overlaying tissues. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5229-5234.	7.1	233
5	The Floral Regulator LEAFY Evolves by Substitutions in the DNA Binding Domain. Science, 2005, 308, 260-263.	12.6	195
6	Highâ€resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy. Plant Journal, 2011, 68, 377-385.	5.7	169
7	Identification of a signal sequence necessary for the unconventional secretion of Engrailed homeoprotein. Current Biology, 1998, 8, 856-863.	3.9	162
8	Accurate and versatile 3D segmentation of plant tissues at cellular resolution. ELife, 2020, 9, .	6.0	155
9	Rules and Self-Organizing Properties of Post-embryonic Plant Organ Cell Division Patterns. Current Biology, 2016, 26, 439-449.	3.9	150
10	An Auxin Transport Mechanism Restricts Positive Orthogravitropism in Lateral Roots. Current Biology, 2013, 23, 817-822.	3.9	134
11	Cytoplasmic Arabidopsis AGO7 accumulates in membrane-associated siRNA bodies and is required for ta-siRNA biogenesis. EMBO Journal, 2012, 31, 1704-1713.	7.8	121
12	In plants, decapping prevents RDR6-dependent production of small interfering RNAs from endogenous mRNAs. Nucleic Acids Research, 2015, 43, 2902-2913.	14.5	107
13	Talking through walls: mechanisms of lateral root emergence in Arabidopsis thaliana. Current Opinion in Plant Biology, 2015, 23, 31-38.	7.1	101
14	Cytoplasmic and nuclear quality control and turnover of single-stranded RNA modulate post-transcriptional gene silencing in plants. Nucleic Acids Research, 2013, 41, 4699-4708.	14.5	99
15	Endogenous TasiRNAs Mediate Non-Cell Autonomous Effects on Gene Regulation in Arabidopsis thaliana. PLoS ONE, 2009, 4, e5980.	2.5	92
16	Engrailed homeoprotein secretion is a regulated process. Development (Cambridge), 2002, 129, 3545-3553.	2.5	89
17	Differentially expressed small <scp>RNA</scp> s in Arabidopsis galls formed by <i>Meloidogyne javanica</i> : a functional role for miR390 and its <scp>TAS</scp> 3â€derived tasi <scp>RNA</scp> s. New Phytologist, 2016, 209, 1625-1640.	7.3	86
18	Temporally and spatially controlled induction of gene expression inArabidopsis thaliana. Plant Journal, 2004, 38, 164-171.	5.7	71

#	Article	IF	CITATIONS
19	Green light for quantitative live-cell imaging in plants. Journal of Cell Science, 2018, 131, .	2.0	71
20	EXPANSIN A1-mediated radial swelling of pericycle cells positions anticlinal cell divisions during lateral root initiation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8597-8602.	7.1	71
21	Traffic into silence: endomembranes and post-transcriptional RNA silencing. EMBO Journal, 2014, 33, 968-980.	7.8	69
22	A Novel fry1 Allele Reveals the Existence of a Mutant Phenotype Unrelated to 5′->3′ Exoribonuclease (XRN) Activities in Arabidopsis thaliana Roots. PLoS ONE, 2011, 6, e16724.	2.5	64
23	Cytoskeleton Dynamics Are Necessary for Early Events of Lateral Root Initiation in Arabidopsis. Current Biology, 2019, 29, 2443-2454.e5.	3.9	63
24	Morphological Plant Modeling: Unleashing Geometric and Topological Potential within the Plant Sciences. Frontiers in Plant Science, 2017, 8, 900.	3.6	61
25	Plant and animal homeodomains use convergent mechanisms for intercellular transfer. EMBO Reports, 2005, 6, 885-890.	4.5	55
26	Light sheet microscopy and live imaging of plants. Journal of Microscopy, 2016, 263, 158-164.	1.8	34
27	To move or not to move: roles and specificity of plant RNA mobility. Current Opinion in Plant Biology, 2020, 57, 52-60.	7.1	34
28	Cell Death in Cells Overlying Lateral Root Primordia Facilitates Organ Growth in Arabidopsis. Current Biology, 2020, 30, 455-464.e7.	3.9	34
29	Root branching: mechanisms, robustness, and plasticity. Wiley Interdisciplinary Reviews: Developmental Biology, 2012, 1, 329-343.	5.9	32
30	Engrailed homeoprotein secretion is a regulated process. Development (Cambridge), 2002, 129, 3545-53.	2.5	31
31	ARF5/MONOPTEROS directly regulates miR390 expression in the <i>Arabidopsis thaliana</i> primary root meristem. Plant Direct, 2019, 3, e00116.	1.9	29
32	Single-cell-based system to monitor carrier driven cellular auxin homeostasis. BMC Plant Biology, 2013, 13, 20.	3.6	28
33	PLETHORAâ€WOX5 interaction and subnuclear localization control ⟨i⟩Arabidopsis⟨/i⟩ root stem cell maintenance. EMBO Reports, 2022, 23, e54105.	4.5	24
34	Early developmental plasticity of lateral roots in response to asymmetric water availability. Nature Plants, 2020, 6, 73-77.	9.3	23
35	Novel Imaging Modalities Shedding Light on Plant Biology: Start Small and Grow Big. Annual Review of Plant Biology, 2020, 71, 789-816.	18.7	22
36	Evolutionary divergence of LFY function in the mustards Arabidopsis thaliana and Leavenworthia crassa. Plant Molecular Biology, 2006, 62, 279-289.	3.9	20

#	Article	IF	CITATIONS
37	Sensitive whole mount <i>inÂsitu</i> localization of small <scp>RNA</scp> s in plants. Plant Journal, 2016, 88, 694-702.	5 . 7	19
38	Postâ€transcriptional regulation in root development. Wiley Interdisciplinary Reviews RNA, 2014, 5, 679-696.	6.4	17
39	Integration of Cell Growth and Asymmetric Division during Lateral Root Initiation in <i>Arabidopsis thaliana</i> . Plant and Cell Physiology, 2021, 62, 1269-1279.	3.1	16
40	Microtubule-based perception of mechanical conflicts controls plant organ morphogenesis. Science Advances, 2022, 8, eabm4974.	10.3	15
41	Live Imaging of Arabidopsis Development. Methods in Molecular Biology, 2014, 1062, 539-550.	0.9	14
42	In silico identification and in vivo validation of a set of evolutionary conserved plant root-specific cis-regulatory elements. Mechanisms of Development, 2013, 130, 70-81.	1.7	6
43	A View to a Kill: Markers for Developmentally Regulated Cell Death in Plants. Plant Physiology, 2015, 169, 2341-2341.	4.8	6
44	Tissue-wide integration of mechanical cues promotes effective auxin patterning. European Physical Journal Plus, 2021, 136, 1.	2.6	5
45	Seeing is Believing: Advances in Plant Imaging Technologies. Plant and Cell Physiology, 2021, 62, 1217-1220.	3.1	3
46	Plant Organ Growth: Stopping Under Stress. Current Biology, 2016, 26, R417-R419.	3.9	2
47	Trans-acting Small Interfering RNAs: Biogenesis, Mode of Action, and Role in Plant Development. Signaling and Communication in Plants, 2012, , 83-108.	0.7	1
48	Plant Biology: The Making of an Epithelium. Current Biology, 2018, 28, R931-R933.	3.9	1
49	Understanding lateral root formation, one cell at a time. Molecular Plant, 2021, 14, 1229-1231.	8.3	1
50	MoD Special Issue on developmental plasticity and adaptation in plants. Mechanisms of Development, 2013, 130, 1.	1.7	0
51	Plant growth and development: new answers to old questions?. Current Opinion in Plant Biology, 2020, 53, A1-A2.	7.1	0