Qi Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8817525/publications.pdf

Version: 2024-02-01

		1307594	1588992
7	1,112	7	8
papers	citations	h-index	g-index
8	8	8	1183
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Matminer: An open source toolkit for materials data mining. Computational Materials Science, 2018, 152, 60-69.	3.0	446
2	Direct observation of chemical short-range order in a medium-entropy alloy. Nature, 2021, 592, 712-716.	27.8	334
3	A critical examination of compound stability predictions from machine-learned formation energies. Npj Computational Materials, 2020, 6, .	8.7	119
4	Benchmarking materials property prediction methods: the Matbench test set and Automatminer reference algorithm. Npj Computational Materials, 2020, 6, .	8.7	96
5	A transferable machine-learning framework linking interstice distribution and plastic heterogeneity in metallic glasses. Nature Communications, 2019, 10, 5537.	12.8	56
6	Predicting the propensity for thermally activated \hat{l}^2 events in metallic glasses via interpretable machine learning. Npj Computational Materials, 2020, 6, .	8.7	35
7	Inverse design of glass structure with deep graph neural networks. Nature Communications, 2021, 12, 5359.	12.8	19