Yuan Xue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8817030/publications.pdf Version: 2024-02-01

VIIAN XIIE

#	Article	IF	CITATIONS
1	Effect of nanocomposite as pour point depressant on the cold flow properties and crystallization behavior of diesel fuel. Chinese Chemical Letters, 2022, 33, 2677-2680.	9.0	15
2	Effect of methacrylate-methacrylamide copolymers with various polar pendants on the cold flow properties of diesel fuels. Fuel, 2022, 315, 123112.	6.4	9
3	Synthesis and evaluation of alkyl methacrylate-norbornene anhydride copolymers with various pendants as pour point depressants for soybean biodiesel-diesel blends. Fuel, 2022, 317, 123542.	6.4	10
4	Tetradecyl methacrylate-N-methylolacrylamide Copolymer: A low concentration and high-efficiency pour point depressant for diesel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 642, 128672.	4.7	13
5	Methylcyclohexyl methacrylate–methacrylate copolymers: an effective cold flow improver for the biodiesel blends. Research on Chemical Intermediates, 2022, 48, 2665-2681.	2.7	4
6	Structure regulation and influence of comb copolymers as pour point depressants on low temperature fluidity of diesel fuel. Energy, 2022, 254, 124438.	8.8	14
7	Chemical structural characteristics of high inertinite coal. Fuel, 2021, 286, 119283.	6.4	19
8	Effect of Pour Point Depressants Combined with Dispersants on the Cold Flow Properties of <scp>Biodieselâ€Diesel</scp> Blends. JAOCS, Journal of the American Oil Chemists' Society, 2021, 98, 163-172.	1.9	23
9	Influence of polar groups on the depressive effects of polymethacrylate polymers as cold flow improvers for diesel fuel. Fuel, 2021, 290, 120035.	6.4	19
10	Research on combined-pour point depressant of methacrylate-acrylamide copolymers and ethylene-vinyl acetate copolymers for diesel fuel. Fuel, 2021, 290, 120002.	6.4	26
11	Improving the cold flow properties of biodiesel from waste cooking oil by ternary blending with bioâ€based alcohols and diesel from direct coal liquefaction. JAOCS, Journal of the American Oil Chemists' Society, 2021, 98, 943-954.	1.9	1
12	Effects of the chemical structure of surfactants on the stability of naphthenic oil-based metalworking fluids. Chinese Chemical Letters, 2020, 31, 345-348.	9.0	5
13	The pyrolysis of vitrinite and inertinite by a combination of quantum chemistry calculation and thermogravimetry-mass spectrometry. Fuel, 2020, 264, 116794.	6.4	15
14	Influence of Tetradecyl Methacrylate- <i>N</i> -α-methacrylamide Copolymers as Pour Point Depressants on the Cold Flow Property of Diesel Fuel. Energy & Fuels, 2020, 34, 11976-11986.	5.1	14
15	Influence of maleic anhydride-co-methyl benzyl acrylate copolymers modified with long-chain fatty amine and long-chain fatty alcohol on the cold flow properties of diesel fuel. Fuel, 2020, 268, 117392.	6.4	39
16	Influence of Methacrylate-benzyl Methacrylate-N-vinyl-2-pyrrolidone as Pour Point Depression on Cold Flow Properties of Diesel Fuel. Energy & Fuels, 2020, 34, 1514-1523.	5.1	26
17	Effects of N-containing pour point depressants on the cold flow properties of diesel fuel. Fuel, 2020, 272, 117666.	6.4	34
18	Ionic-liquid-assisted synthesis of nitrogen-doped porous carbon for high-performance supercapacitors. Journal of Alloys and Compounds, 2019, 806, 1542-1549.	5.5	3

YUAN XUE

#	Article	lF	CITATIONS
19	Synthesis and evaluation of benzyl methacrylate-methacrylate copolymers as pour point depressant in diesel fuel. Fuel, 2019, 255, 115880.	6.4	45
20	Influence of alkyl methacrylate-maleic anhydride-1-hexadecene terpolymers and their mixtures with ethylene-vinyl acetate as pour point depressants in diesel fuel. Petroleum Science and Technology, 2019, 37, 2010-2017.	1.5	11
21	Regeneration of used rolling oils via the PVDF membrane processes. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2019, 41, 3103-3111.	2.3	5
22	Comprehensive study of structure model, pyrolysis and liquefaction behaviour of Heidaigou lignite and its liquefied oil. Fuel, 2019, 240, 84-91.	6.4	20
23	Study on the structural differences between Heidaigou long flame coal and its vitrinite. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2019, 41, 78-85.	2.3	6
24	Influence of poly (methacrylate-co-maleic anhydride) pour point depressant with various pendants on low-temperature flowability of diesel fuel. Fuel, 2018, 216, 898-907.	6.4	60
25	A new kind of nanohybrid poly(tetradecyl methyl-acrylate)-graphene oxide as pour point depressant to evaluate the cold flow properties and exhaust gas emissions of diesel fuels. Fuel, 2018, 216, 818-825.	6.4	39
26	Factors affecting the cold flow properties of biodiesel: Fatty acid esters. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2018, 40, 516-522.	2.3	12
27	Novel method of preparing CoFe 2 O 4 /graphene by using steel rolling sludge for supercapacitor. Electrochimica Acta, 2017, 231, 565-574.	5.2	50
28	A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Processing Technology, 2017, 160, 196-206.	7.2	507
29	Progress on upgrading methods of bio-oil: A review. International Journal of Energy Research, 2017, 41, 1798-1816.	4.5	76
30	Effect of methyl acetoacetate as a potential cold flow improver for biodiesel. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2017, 39, 97-102.	2.3	4
31	The influence of polymethyl acrylate as a pour point depressant for biodiesel. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2017, 39, 17-22.	2.3	11
32	Effect of the nano-hybrid pour point depressants on the cold flow properties of diesel fuel. Fuel, 2017, 193, 65-71.	6.4	60
33	Reaction conditions of ultrasound-assisted production of biodiesel: A review. International Journal of Energy Research, 2017, 41, 1081-1095.	4.5	12
34	A review on the operating conditions of producing bio-oil from hydrothermal liquefaction of biomass. International Journal of Energy Research, 2016, 40, 865-877.	4.5	97
35	Ternary blends of biodiesel with petro-diesel and diesel from direct coal liquefaction for improving the cold flow properties of waste cooking oil biodiesel. Fuel, 2016, 177, 46-52.	6.4	28
36	Graphene-Karst Cave Flower-like Ni–Mn Layered Double Oxides Nanoarrays with Energy Storage Electrode. Electrochimica Acta, 2016, 220, 36-46.	5.2	28

Yuan Xue

#	Article	IF	CITATIONS
37	Effect of poly-alpha-olefin pour point depressant on cold flow properties of waste cooking oil biodiesel blends. Fuel, 2016, 184, 110-117.	6.4	62
38	Carbon-coated Hierarchical Ni–Mn Layered Double Hydroxide Nanoarrays on Ni Foam for Flexible High-capacitance Supercapacitors. Electrochimica Acta, 2016, 213, 55-65.	5.2	90
39	Improving the cold flow properties of high-proportional waste cooking oil biodiesel blends with mixed cold flow improvers. RSC Advances, 2016, 6, 13365-13370.	3.6	15
40	Study on the performance mechanism of methacrylate pour point depressant in soybean biodiesel blends. RSC Advances, 2015, 5, 90144-90149.	3.6	15
41	Performance improvement of the benzyl methacrylate-methacrylate copolymers pour point depressant by hybrid with nano-silica for diesel fuels. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-9.	2.3	4
42	Decolorization and regeneration of waste lubricating oil by a CNTs/PDMS/PVDF membrane. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-10.	2.3	0