Juthathip Mongkolsapaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8816587/publications.pdf

Version: 2024-02-01

72 papers

15,289 citations

50276 46 h-index 79698 73 g-index

91 all docs 91 docs citations

91 times ranked 20934 citing authors

#	Article	IF	Citations
1	The antibody response to SARS-CoV-2 Beta underscores the antigenic distance to other variants. Cell Host and Microbe, 2022, 30, 53-68.e12.	11.0	52
2	An immunodominant NP105–113-B*07:02 cytotoxic T cell response controls viral replication and is associated with less severe COVID-19 disease. Nature Immunology, 2022, 23, 50-61.	14.5	110
3	Reduced neutralisation of SARS-CoV-2 omicron B.1.1.529 variant by post-immunisation serum. Lancet, The, 2022, 399, 234-236.	13.7	318
4	SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. Cell, 2022, 185, 467-484.e15.	28.9	788
5	KIR copy number variations in dengue-infected patients from northeastern Thailand. Human Immunology, 2022, 83, 328-334.	2.4	2
6	Heterologous versus homologous COVID-19 booster vaccination in previous recipients of two doses of CoronaVac COVID-19 vaccine in Brazil (RHH-001): a phase 4, non-inferiority, single blind, randomised study. Lancet, The, 2022, 399, 521-529.	13.7	314
7	Antibody responses and correlates of protection in the general population after two doses of the ChAdOx1 or BNT162b2 vaccines. Nature Medicine, 2022, 28, 1072-1082.	30.7	147
8	Neutralizing Activities Against the Omicron Variant After a Heterologous Booster in Healthy Adults Receiving Two Doses of CoronaVac Vaccination. Journal of Infectious Diseases, 2022, 226, 1372-1381.	4.0	41
9	The ChAdOx1 vectored vaccine, AZD2816, induces strong immunogenicity against SARS-CoV-2 beta (B.1.351) and other variants of concern in preclinical studies. EBioMedicine, 2022, 77, 103902.	6.1	23
10	Omicron BA.1, BA.2 and COVID-19 Booster Vaccination. Journal of Infectious Diseases, 2022, 226, 1480-1481.	4.0	2
11	Potent cross-reactive antibodies following Omicron breakthrough in vaccinees. Cell, 2022, 185, 2116-2131.e18.	28.9	105
12	Fatal COVID-19 outcomes are associated with an antibody response targeting epitopes shared with endemic coronaviruses. JCI Insight, 2022, 7, .	5.0	24
13	Antibody escape of SARS-CoV-2 Omicron BA.4 and BA.5 from vaccine and BA.1 serum. Cell, 2022, 185, 2422-2433.e13.	28.9	532
14	SARS-CoV-2 antibody trajectories after a single COVID-19 vaccination with and without prior infection. Nature Communications, 2022, 13, .	12.8	6
15	Convalescent plasma therapy for the treatment of patients with COVIDâ€19: Assessment of methods available for antibody detection and their correlation with neutralising antibody levels. Transfusion Medicine, 2021, 31, 167-175.	1.1	71
16	Flavivirus maturation leads to the formation of an occupied lipid pocket in the surface glycoproteins. Nature Communications, 2021, 12, 1238.	12.8	37
17	A haemagglutination test for rapid detection of antibodies to SARS-CoV-2. Nature Communications, 2021, 12, 1951.	12.8	54
18	Native-like SARS-CoV-2 Spike Glycoprotein Expressed by ChAdOx1 nCoV-19/AZD1222 Vaccine. ACS Central Science, 2021, 7, 594-602.	11.3	118

#	Article	IF	Citations
19	The antigenic anatomy of SARS-CoV-2 receptor binding domain. Cell, 2021, 184, 2183-2200.e22.	28.9	331
20	Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell, 2021, 184, 2348-2361.e6.	28.9	936
21	Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera. Cell, 2021, 184, 2201-2211.e7.	28.9	442
22	Antibody evasion by the P.1 strain of SARS-CoV-2. Cell, 2021, 184, 2939-2954.e9.	28.9	519
23	Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum. Cell, 2021, 184, 4220-4236.e13.	28.9	630
24	Reactogenicity and immunogenicity after a late second dose or a third dose of ChAdOx1 nCoV-19 in the UK: a substudy of two randomised controlled trials (COV001 and COV002). Lancet, The, 2021, 398, 981-990.	13.7	214
25	Immunogenicity of standard and extended dosing intervals of BNT162b2 mRNA vaccine. Cell, 2021, 184, 5699-5714.e11.	28.9	262
26	Anti-spike antibody response to natural SARS-CoV-2 infection in the general population. Nature Communications, 2021, 12, 6250.	12.8	88
27	The epitope arrangement on flavivirus particles contributes to Mab C10's extraordinary neutralization breadth across Zika and dengue viruses. Cell, 2021, 184, 6052-6066.e18.	28.9	38
28	Antibodies targeting epitopes on the cell-surface form of NS1 protect against Zika virus infection during pregnancy. Nature Communications, 2020, 11, 5278.	12.8	30
29	Structural basis for the neutralization of SARS-CoV-2 by an antibody from a convalescent patient. Nature Structural and Molecular Biology, 2020, 27, 950-958.	8.2	268
30	Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nature Immunology, 2020, 21, 1336-1345.	14.5	1,066
31	Performance characteristics of five immunoassays for SARS-CoV-2: a head-to-head benchmark comparison. Lancet Infectious Diseases, The, 2020, 20, 1390-1400.	9.1	336
32	Autoantibody-dependent amplification of inflammation in SLE. Cell Death and Disease, 2020, 11, 729.	6.3	23
33	Immunogenicity and Efficacy of Zika Virus Envelope Domain III in DNA, Protein, and ChAdOx1 Adenoviral-Vectored Vaccines. Vaccines, 2020, 8, 307.	4.4	18
34	Neutralization of SARS-CoV-2 by Destruction of the Prefusion Spike. Cell Host and Microbe, 2020, 28, 445-454.e6.	11.0	298
35	Antibody testing for COVID-19: A report from theÂNational COVID Scientific Advisory Panel. Wellcome Open Research, 2020, 5, 139.	1.8	179
36	SARS-CoV-2 RNA detected in blood products from patients with COVID-19 is not associated with infectious virus. Wellcome Open Research, 2020, 5, 181.	1.8	81

#	Article	IF	Citations
37	Detection of neutralising antibodies to SARS-CoV-2 to determine population exposure in Scottish blood donors between March and May 2020. Eurosurveillance, 2020, 25, .	7.0	64
38	A protective Zika virus E-dimer-based subunit vaccine engineered to abrogate antibody-dependent enhancement of dengue infection. Nature Immunology, 2019, 20, 1291-1298.	14.5	60
39	Dengue and Zika Virus Cross-Reactive Human Monoclonal Antibodies Protect against Spondweni Virus Infection and Pathogenesis in Mice. Cell Reports, 2019, 26, 1585-1597.e4.	6.4	18
40	Longitudinal Analysis of Antibody Cross-neutralization Following Zika Virus and Dengue Virus Infection in Asia and the Americas. Journal of Infectious Diseases, 2018, 218, 536-545.	4.0	124
41	Which Dengue Vaccine Approach Is the Most Promising, and Should We Be Concerned about Enhanced Disease after Vaccination?. Cold Spring Harbor Perspectives in Biology, 2018, 10, a029520.	5.5	16
42	The immunology of Zika Virus. F1000Research, 2018, 7, 203.	1.6	18
43	Characterization of a potent and highly unusual minimally enhancing antibody directed against dengue virus. Nature Immunology, 2018, 19, 1248-1256.	14.5	31
44	The immune response against flaviviruses. Nature Immunology, 2018, 19, 1189-1198.	14.5	126
45	Potent Neutralizing Human Monoclonal Antibodies Preferentially Target Mature Dengue Virus Particles: Implication for Novel Strategy for Dengue Vaccine. Journal of Virology, 2018, 92, .	3.4	24
46	Rational Zika vaccine design via the modulation of antigen membrane anchors in chimpanzee adenoviral vectors. Nature Communications, 2018, 9, 2441.	12.8	69
47	Therapeutic and protective efficacy of a dengue antibody against Zika infection in rhesus monkeys. Nature Medicine, 2018, 24, 721-723.	30.7	46
48	Neutrophil Activation and Early Features of NET Formation Are Associated With Dengue Virus Infection in Human. Frontiers in Immunology, 2018, 9, 3007.	4.8	56
49	Covalently linked dengue virus envelope glycoprotein dimers reduce exposure of the immunodominant fusion loop epitope. Nature Communications, 2017, 8, 15411.	12.8	69
50	Human antibodies to the dengue virus E-dimer epitope have therapeutic activity against Zika virus infection. Nature Immunology, 2017, 18, 1261-1269.	14.5	95
51	Germline bias dictates cross-serotype reactivity in a common dengue-virus-specific CD8+ T cell response. Nature Immunology, 2017, 18, 1228-1237.	14.5	36
52	The immunopathology of dengue and Zika virus infections. Current Opinion in Immunology, 2017, 48, 1-6.	5.5	38
53	Evolution of neurovirulent Zika virus. Science, 2017, 358, 863-864.	12.6	7
54	Recent advances in understanding dengue. F1000Research, 2016, 5, 78.	1.6	40

#	Article	IF	Citations
55	Antibodies and tuberculosis. Tuberculosis, 2016, 101, 102-113.	1.9	131
56	MAIT cells are activated during human viral infections. Nature Communications, 2016, 7, 11653.	12.8	428
57	Structural basis of potent Zika–dengue virus antibody cross-neutralization. Nature, 2016, 536, 48-53.	27.8	465
58	Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus. Nature Immunology, 2016, 17, 1102-1108.	14.5	781
59	Recognition determinants of broadly neutralizing human antibodies against dengue viruses. Nature, 2015, 520, 109-113.	27.8	301
60	New insights into the immunopathology and control of dengue virus infection. Nature Reviews Immunology, 2015, 15, 745-759.	22.7	282
61	A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus. Nature Immunology, 2015, 16, 170-177.	14.5	415
62	Sensing of Immature Particles Produced by Dengue Virus Infected Cells Induces an Antiviral Response by Plasmacytoid Dendritic Cells. PLoS Pathogens, 2014, 10, e1004434.	4.7	65
63	Invariant NKT Cell Response to Dengue Virus Infection in Human. PLoS Neglected Tropical Diseases, 2014, 8, e2955.	3.0	21
64	A Simplified Positive-Sense-RNA Virus Construction Approach That Enhances Analysis Throughput. Journal of Virology, 2013, 87, 12667-12674.	3.4	44
65	Structural Analysis of a Dengue Cross-Reactive Antibody Complexed with Envelope Domain III Reveals the Molecular Basis of Cross-Reactivity. Journal of Immunology, 2012, 188, 4971-4979.	0.8	82
66	An In-Depth Analysis of Original Antigenic Sin in Dengue Virus Infection. Journal of Virology, 2011, 85, 410-421.	3.4	165
67	Cross-Reacting Antibodies Enhance Dengue Virus Infection in Humans. Science, 2010, 328, 745-748.	12.6	780
68	T Cell Responses to Whole SARS Coronavirus in Humans. Journal of Immunology, 2008, 181, 5490-5500.	0.8	449
69	T cell Responses and Dengue Haemorrhagic Fever. Novartis Foundation Symposium, 2008, , 164-176.	1.1	16
70	T Cell Responses in Dengue Hemorrhagic Fever: Are Cross-Reactive T Cells Suboptimal?. Journal of Immunology, 2006, 176, 3821-3829.	0.8	244
71	Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nature Medicine, 2003, 9, 921-927.	30.7	707
72	Structure of the TRAIL-DR5 complex reveals mechanisms conferring specificity in apoptotic initiation. Nature Structural Biology, 1999, 6, 1048-1053.	9.7	235