## Christelle Am Robert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8815833/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nature Communications, 2018, 9, 2738.                                                                                                                                                                                                                             | 12.8 | 861       |
| 2  | Indole is an essential herbivore-induced volatile priming signal in maize. Nature Communications, 2015, 6, 6273.                                                                                                                                                                                                                                                                   | 12.8 | 349       |
| 3  | The maize lipoxygenase, <i>Zm<scp>LOX</scp>10</i> , mediates green leaf volatile, jasmonate and<br>herbivoreâ€induced plant volatile production for defense against insect attack. Plant Journal, 2013, 74,<br>59-73.                                                                                                                                                              | 5.7  | 217       |
| 4  | Sequence of arrival determines plantâ€mediated interactions between herbivores. Journal of Ecology, 2011, 99, 7-15.                                                                                                                                                                                                                                                                | 4.0  | 160       |
| 5  | Herbivoreâ€induced plant volatiles mediate host selection by a root herbivore. New Phytologist, 2012,<br>194, 1061-1069.                                                                                                                                                                                                                                                           | 7.3  | 152       |
| 6  | Leafâ€herbivore attack reduces carbon reserves and regrowth from the roots via jasmonate and auxin signaling. New Phytologist, 2013, 200, 1234-1246.                                                                                                                                                                                                                               | 7.3  | 150       |
| 7  | Metabolomics reveals herbivoreâ€induced metabolites of resistance and susceptibility in maize leaves and roots. Plant, Cell and Environment, 2013, 36, 621-639.                                                                                                                                                                                                                    | 5.7  | 149       |
| 8  | A specialist root herbivore exploits defensive metabolites to locate nutritious tissues. Ecology<br>Letters, 2012, 15, 55-64.                                                                                                                                                                                                                                                      | 6.4  | 146       |
| 9  | Whole-genome-based revisit of Photorhabdus phylogeny: proposal for the elevation of most<br>Photorhabdus subspecies to the species level and description of one novel species Photorhabdus<br>bodei sp. nov., and one novel subspecies Photorhabdus laumondii subsp. clarkei subsp. nov<br>International lournal of Systematic and Evolutionary Microbiology, 2018, 68, 2664-2681. | 1.7  | 132       |
| 10 | Induced Jasmonate Signaling Leads to Contrasting Effects on Root Damage and Herbivore<br>Performance. Plant Physiology, 2015, 167, 1100-1116.                                                                                                                                                                                                                                      | 4.8  | 104       |
| 11 | Plant iron acquisition strategy exploited by an insect herbivore. Science, 2018, 361, 694-697.                                                                                                                                                                                                                                                                                     | 12.6 | 98        |
| 12 | Genetically engineered maize plants reveal distinct costs and benefits of constitutive volatile emissions in the field. Plant Biotechnology Journal, 2013, 11, 628-639.                                                                                                                                                                                                            | 8.3  | 90        |
| 13 | Biosynthesis of 8-O-methylated benzoxazinoid defense compounds in maize. Plant Cell, 2016, 28, tpc.00065.2016.                                                                                                                                                                                                                                                                     | 6.6  | 87        |
| 14 | Herbivore intoxication as a potential primary function of an inducible volatile plant signal. Journal of Ecology, 2016, 104, 591-600.                                                                                                                                                                                                                                              | 4.0  | 83        |
| 15 | Synergies and tradeâ€offs between insect and pathogen resistance in maize leaves and roots. Plant, Cell and Environment, 2011, 34, 1088-1103.                                                                                                                                                                                                                                      | 5.7  | 82        |
| 16 | Systemic root signalling in a belowground, volatileâ€mediated tritrophic interaction. Plant, Cell and<br>Environment, 2011, 34, 1267-1275.                                                                                                                                                                                                                                         | 5.7  | 80        |
| 17 | Fineâ€ŧuning the â€~plant domesticationâ€reduced defense' hypothesis: specialist vs generalist herbivores.<br>New Phytologist, 2018, 217, 355-366.                                                                                                                                                                                                                                 | 7.3  | 79        |
| 18 | Sequestration of plant secondary metabolites by insect herbivores: molecular mechanisms and ecological consequences. Current Opinion in Insect Science, 2016, 14, 8-11.                                                                                                                                                                                                            | 4.4  | 78        |

CHRISTELLE AM ROBERT

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Highly localized and persistent induction of <i>Bx1</i> â€dependent herbivore resistance factors in<br>maize. Plant Journal, 2016, 88, 976-991.                                                                                                 | 5.7  | 76        |
| 20 | A specialist root herbivore reduces plant resistance and uses an induced plant volatile to aggregate in<br>a densityâ€dependent manner. Functional Ecology, 2012, 26, 1429-1440.                                                                | 3.6  | 75        |
| 21 | A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack. PLoS Biology, 2016, 14, e1002332.                                                                                                                                        | 5.6  | 71        |
| 22 | Fungal resistance mediated by maize wallâ€associated kinase Zm <scp>WAK</scp> â€ <scp>RLK</scp> 1<br>correlates with reduced benzoxazinoid content. New Phytologist, 2019, 221, 976-987.                                                        | 7.3  | 71        |
| 23 | Auxin Is Rapidly Induced by Herbivore Attack and Regulates a Subset of Systemic, Jasmonate-Dependent<br>Defenses. Plant Physiology, 2016, 172, 521-532.                                                                                         | 4.8  | 69        |
| 24 | Sequestration and activation of plant toxins protect the western corn rootworm from enemies at multiple trophic levels. ELife, 2017, 6, .                                                                                                       | 6.0  | 68        |
| 25 | Induced Immunity Against Belowground Insect Herbivores- Activation of Defenses in the Absence of a<br>Jasmonate Burst. Journal of Chemical Ecology, 2012, 38, 629-640.                                                                          | 1.8  | 66        |
| 26 | Selinene Volatiles Are Essential Precursors for Maize Defense Promoting Fungal Pathogen Resistance.<br>Plant Physiology, 2017, 175, 1455-1468.                                                                                                  | 4.8  | 61        |
| 27 | Induced carbon reallocation and compensatory growth as root herbivore tolerance mechanisms.<br>Plant, Cell and Environment, 2014, 37, 2613-2622.                                                                                                | 5.7  | 60        |
| 28 | Oviposition by a moth suppresses constitutive and herbivore-induced plant volatiles in maize. Planta, 2011, 234, 207-215.                                                                                                                       | 3.2  | 59        |
| 29 | Convergent evolution of a metabolic switch between aphid and caterpillar resistance in cereals.<br>Science Advances, 2018, 4, eaat6797.                                                                                                         | 10.3 | 58        |
| 30 | Plant defense resistance in natural enemies of a specialist insect herbivore. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23174-23181.                                                          | 7.1  | 53        |
| 31 | New frontiers in belowground ecology for plant protection from root-feeding insects. Applied Soil Ecology, 2016, 108, 96-107.                                                                                                                   | 4.3  | 49        |
| 32 | The Role of Plant Primary and Secondary Metabolites in Root-Herbivore Behaviour, Nutrition and Physiology. Advances in Insect Physiology, 2013, 45, 53-95.                                                                                      | 2.7  | 44        |
| 33 | A physiological and behavioral mechanism for leaf-herbivore induced systemic root resistance. Plant<br>Physiology, 2015, 169, pp.00759.2015.                                                                                                    | 4.8  | 44        |
| 34 | Direct and Indirect Plant Defenses are not Suppressed by Endosymbionts of a Specialist Root<br>Herbivore. Journal of Chemical Ecology, 2013, 39, 507-515.                                                                                       | 1.8  | 36        |
| 35 | Carbon-11 Reveals Opposing Roles of Auxin and Salicylic Acid in Regulating Leaf Physiology, Leaf<br>Metabolism, and Resource Allocation Patterns that Impact Root Growth in Zea mays. Journal of Plant<br>Growth Regulation, 2014, 33, 328-339. | 5.1  | 34        |
| 36 | A mechanism for sequence specificity in plantâ€mediated interactions between herbivores. New Phytologist, 2017, 214, 169-179.                                                                                                                   | 7.3  | 34        |

CHRISTELLE AM ROBERT

| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Engineering bacterial symbionts of nematodes improves their biocontrol potential to counter the western corn rootworm. Nature Biotechnology, 2020, 38, 600-608.                                                                      | 17.5 | 27        |
| 38 | Dynamic Precision Phenotyping Reveals Mechanism of Crop Tolerance to Root Herbivory. Plant<br>Physiology, 2016, 172, pp.00735.2016.                                                                                                  | 4.8  | 23        |
| 39 | Soil chemistry determines whether defensive plant secondary metabolites promote or suppress<br>herbivore growth. Proceedings of the National Academy of Sciences of the United States of America,<br>2021, 118, .                    | 7.1  | 22        |
| 40 | Entomopathogenic nematodes increase predation success by inducing cadaver volatiles that attract healthy herbivores. ELife, 2019, 8, .                                                                                               | 6.0  | 21        |
| 41 | Entomopathogenic nematodes from Mexico that can overcome the resistance mechanisms of the western corn rootworm. Scientific Reports, 2020, 10, 8257.                                                                                 | 3.3  | 20        |
| 42 | Chemical host-seeking cues of entomopathogenic nematodes. Current Opinion in Insect Science, 2021, 44, 72-81.                                                                                                                        | 4.4  | 20        |
| 43 | Belowground herbivore tolerance involves delayed overcompensatory root regrowth in maize.<br>Entomologia Experimentalis Et Applicata, 2015, 157, 113-120.                                                                            | 1.4  | 15        |
| 44 | The plant metabolome guides fitness-relevant foraging decisions of a specialist herbivore. PLoS<br>Biology, 2021, 19, e3001114.                                                                                                      | 5.6  | 15        |
| 45 | Impact of Seasonal and Temperature-Dependent Variation in Root Defense Metabolites on Herbivore<br>Preference in Taraxacum officinale. Journal of Chemical Ecology, 2020, 46, 63-75.                                                 | 1.8  | 14        |
| 46 | Western Corn Rootworm, Plant and Microbe Interactions: A Review and Prospects for New<br>Management Tools. Insects, 2021, 12, 171.                                                                                                   | 2.2  | 14        |
| 47 | A Differential Role of Volatiles from Conspecific and Heterospecific Competitors in the Selection of<br>Oviposition Sites by the Aphidophagous Hoverfly Sphaerophoria rueppellii. Journal of Chemical<br>Ecology, 2015, 41, 493-500. | 1.8  | 13        |
| 48 | Influence of drought on plant performance through changes in belowground tritrophic interactions. Ecology and Evolution, 2018, 8, 6756-6765.                                                                                         | 1.9  | 12        |
| 49 | Induction of root-resistance by leaf-herbivory follows a vertical gradient. Journal of Plant<br>Interactions, 2011, 6, 133-136.                                                                                                      | 2.1  | 11        |
| 50 | A conserved pattern in plantâ€mediated interactions between herbivores. Ecology and Evolution, 2016, 6, 1032-1040.                                                                                                                   | 1.9  | 10        |
| 51 | Herbivoreâ€induced plant volatiles mediate defense regulation in maize leaves but not in maize roots.<br>Plant, Cell and Environment, 2021, 44, 2672-2686.                                                                           | 5.7  | 10        |
| 52 | Using plant chemistry to improve interactions between plants, herbivores and their natural enemies: challenges and opportunities. Current Opinion in Biotechnology, 2021, 70, 262-265.                                               | 6.6  | 8         |
| 53 | A beta-glucosidase of an insect herbivore determines both toxicity and deterrence of a dandelion defense metabolite. ELife, 2021, 10, .                                                                                              | 6.0  | 8         |
| 54 | Adapted dandelions trade dispersal for germination upon root herbivore attack. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192930.                                                                         | 2.6  | 7         |

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Natural enemies of herbivores maintain their biological control potential under shortâ€ŧerm exposure<br>to future CO <sub>2</sub> , temperature, and precipitation patterns. Ecology and Evolution, 2021, 11,<br>4182-4192. | 1.9 | 7         |
| 56 | Climate Change Modulates Multitrophic Interactions Between Maize, A Root Herbivore, and Its<br>Enemies. Journal of Chemical Ecology, 2021, 47, 889-906.                                                                     | 1.8 | 6         |
| 57 | Correlated Induction of Phytohormones and Glucosinolates Shapes Insect Herbivore Resistance of<br>Cardamine Species Along Elevational Gradients. Journal of Chemical Ecology, 2019, 45, 638-648.                            | 1.8 | 5         |
| 58 | Volatileâ€mediated defence regulation occurs in maize leaves but not in maize root. Plant, Cell and<br>Environment, 2020, , .                                                                                               | 5.7 | 4         |
| 59 | ZEITLUPE facilitates the rhythmic movements of <i>Nicotiana attenuata</i> flowers. Plant Journal, 2020, 103, 308-322.                                                                                                       | 5.7 | 2         |