
Maria Mittag

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8815719/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The <i>Chlamydomonas</i> Genome Reveals the Evolution of Key Animal and Plant Functions. Science, 2007, 318, 245-250.	12.6	2,354
2	Insights into the red algae and eukaryotic evolution from the genome of <i>Porphyra umbilicalis</i> (Bangiophyceae, Rhodophyta). Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6361-E6370.	7.1	233
3	A blue-light photoreceptor mediates the feedback regulation of photosynthesis. Nature, 2016, 537, 563-566.	27.8	185
4	Proteomic Analysis of the Eyespot of Chlamydomonas reinhardtii Provides Novel Insights into Its Components and Tactic Movements. Plant Cell, 2006, 18, 1908-1930.	6.6	169
5	A Flavin Binding Cryptochrome Photoreceptor Responds to Both Blue and Red Light in <i>Chlamydomonas reinhardtii</i> . Plant Cell, 2012, 24, 2992-3008.	6.6	151
6	The Circadian Clock in Chlamydomonas reinhardtii. What Is It For? What Is It Similar To?. Plant Physiology, 2005, 137, 399-409.	4.8	132
7	From molecular manipulation of domesticated Chlamydomonas reinhardtii to survival in nature. ELife, 2018, 7, .	6.0	119
8	ldentification of a specific fucoxanthin-chlorophyll protein in the light harvesting complex of photosystem I in the diatom Cyclotella meneghiniana. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 905-912.	1.0	86
9	Identification of several sub-populations in the pool of light harvesting proteins in the pennate diatom Phaeodactylum tricornutum. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 303-310.	1.0	76
10	Antagonistic bacteria disrupt calcium homeostasis and immobilize algal cells. Nature Communications, 2017, 8, 1756.	12.8	66
11	A Heteromeric RNA-Binding Protein Is Involved in Maintaining Acrophase and Period of the Circadian Clock. Plant Physiology, 2006, 142, 797-806.	4.8	62
12	The Circadian RNA-Binding Protein CHLAMY 1 Represents a Novel Type Heteromer of RNA Recognition Motif and Lysine Homology Domain-Containing Subunits. Eukaryotic Cell, 2004, 3, 815-825.	3.4	53
13	Functional proteomics of circadian expressed proteins from Chlamydomonas reinhardtii. FEBS Letters, 2004, 559, 129-135.	2.8	52
14	Analysis of Flagellar Phosphoproteins from <i>Chlamydomonas reinhardtii</i> . Eukaryotic Cell, 2009, 8, 922-932.	3.4	52
15	Essential Role of an Unusually Long-lived Tyrosyl Radical in the Response to Red Light of the Animal-like Cryptochrome aCRY. Journal of Biological Chemistry, 2016, 291, 14062-14071.	3.4	51
16	Cryptochrome photoreceptors in green algae: Unexpected versatility of mechanisms and functions. Journal of Plant Physiology, 2017, 217, 4-14.	3.5	51
17	Structure of the bifunctional cryptochrome aCRY from Chlamydomonas reinhardtii. Nucleic Acids Research, 2018, 46, 8010-8022.	14.5	51
18	A Plant Cryptochrome Controls Key Features of the <i>Chlamydomonas</i> Circadian Clock and Its Life Cycle. Plant Physiology, 2017, 174, 185-201.	4.8	50

MARIA MITTAG

#	Article	IF	CITATIONS
19	A Chemical Perspective on Microalgal–Microbial Interactions. Trends in Plant Science, 2015, 20, 689-693.	8.8	41
20	How the green alga Chlamydomonas reinhardtii keeps time. Protoplasma, 2010, 244, 3-14.	2.1	40
21	An Animal-Like Cryptochrome Controls the <i>Chlamydomonas</i> Sexual Cycle. Plant Physiology, 2017, 174, 1334-1347.	4.8	35
22	Lichen-like association of <i>Chlamydomonas reinhardtii</i> and <i>Aspergillus nidulans</i> protects algal cells from bacteria. ISME Journal, 2020, 14, 2794-2805.	9.8	30
23	The Heme-Binding Protein SOUL3 of Chlamydomonas reinhardtii Influences Size and Position of the Eyespot. Molecular Plant, 2013, 6, 931-944.	8.3	27
24	Both Subunits of the Circadian RNA-Binding Protein CHLAMY1 Can Integrate Temperature Information Â. Plant Physiology, 2008, 147, 2179-2193.	4.8	26
25	News about cryptochrome photoreceptors in algae. Plant Signaling and Behavior, 2013, 8, e22870.	2.4	25
26	Response of the Sensory Animal-like Cryptochrome aCRY to Blue and Red Light As Revealed by Infrared Difference Spectroscopy. Biochemistry, 2014, 53, 1041-1050.	2.5	24
27	Fucoxanthin-Chlorophyll Protein Complexes of the Centric Diatom <i>Cyclotella Meneghiniana</i> Differ in Lhcx1 and Lhcx6_1 Content. Plant Physiology, 2019, 179, 1779-1795.	4.8	24
28	Proteomic Analysis of a Fraction with Intact Eyespots of Chlamydomonas reinhardtii and Assignment of Protein Methylation. Frontiers in Plant Science, 2015, 6, 1085.	3.6	23
29	The World of Algae Reveals a Broad Variety of Cryptochrome Properties and Functions. Frontiers in Plant Science, 2021, 12, 766509.	3.6	20
30	A polyyne toxin produced by an antagonistic bacterium blinds and lyses a Chlamydomonad alga. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	19
31	A giant type I polyketide synthase participates in zygospore maturation in <i>Chlamydomonas reinhardtii</i> . Plant Journal, 2018, 95, 268-281.	5.7	18
32	The bacterium <i>Pseudomonas protegens</i> antagonizes the microalga <scp> <i>Chlamydomonas reinhardtii</i> </scp> using a blend of toxins. Environmental Microbiology, 2021, 23, 5525-5540.	3.8	17
33	DASH cryptochrome 1, a UVâ€A receptor, balances the photosynthetic machinery of <i>Chlamydomonas reinhardtii</i> . New Phytologist, 2021, 232, 610-624.	7.3	15
34	Evolution of circadian clocks along the green lineage. Plant Physiology, 2022, 190, 924-937.	4.8	15
35	Novel interaction of two clockâ€relevant RNAâ€binding proteins C3 and XRN1 in <i>Chlamydomonas reinhardtii</i> . FEBS Letters, 2012, 586, 3969-3973.	2.8	12
36	Multiple Roles and Interaction Factors of an E-Box Element in <i>Chlamydomonas reinhardtii</i> . Plant Physiology, 2010, 152, 2243-2257.	4.8	11

MARIA MITTAG

#	Article	IF	CITATIONS
37	Application of Phosphoproteomics to Find Targets of Casein Kinase 1 in the Flagellum of <i>Chlamydomonas</i> . International Journal of Plant Genomics, 2012, 2012, 1-9.	2.2	11
38	Functional proteomics of light-harvesting complex proteins under varying light-conditions in diatoms. Journal of Plant Physiology, 2017, 217, 38-43.	3.5	9
39	Time-Resolved Infrared and Visible Spectroscopy on Cryptochrome aCRY: Basis for Red Light Reception. Biophysical Journal, 2019, 117, 490-499.	0.5	8
40	C-Terminal Extension of a Plant Cryptochrome Dissociates from the β-Sheet of the Flavin-Binding Domain. Journal of Physical Chemistry Letters, 2021, 12, 5558-5563.	4.6	7
41	Total Synthesis and Structure Correction of the Cyclic Lipodepsipeptide Orfamide A. Chemistry - A European Journal, 2022, 28, .	3.3	7
42	A Musashi Splice Variant and Its Interaction Partners Influence Temperature Acclimation in <i>Chlamydomonas</i> . Plant Physiology, 2018, 178, 1489-1506.	4.8	6
43	Light driven reactions in model algae. Journal of Plant Physiology, 2017, 217, 1-3.	3.5	5
44	A purification strategy for analysis of the DNA/RNA-associated sub-proteome from chloroplasts of mustard cotyledons. Frontiers in Plant Science, 2014, 5, 557.	3.6	3
45	ROC75 is an Attenuator for the Circadian Clock that Controls LHCSR3 Expression. Plant and Cell Physiology, 2018, 59, 2602-2607.	3.1	3
46	A marine Chlamydomonas sp. emerging as an algal model. Journal of Phycology, 2021, 57, 54-69.	2.3	3
47	The C-terminus of a diatom plant-like cryptochrome influences the FAD redox state and binding of interaction partners. Journal of Experimental Botany, 2022, 73, 1934-1948.	4.8	3