
Ricardo Borges

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8814954/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Secretory Vesicle Failure in Parkinson's Disease Occurs in Human Platelets. Annals of Neurology, 2022, 91, 697-703.	5.3	2
2	One hundred years from Otto Loewi experiment, a dream that revolutionized our view of neurotransmission. Pflugers Archiv European Journal of Physiology, 2021, 473, 977-981.	2.8	4
3	DIY Universal Fraction Collector. Analytical Chemistry, 2021, 93, 9314-9318.	6.5	3
4	Glucagon-like peptide-1 receptor controls exocytosis in chromaffin cells by increasing full-fusion events. Cell Reports, 2021, 36, 109609.	6.4	3
5	The rebirth of isolated organ contraction studies for drug discovery and repositioning. Drug Discovery Today, 2021, , .	6.4	Ο
6	Adrenergic chromaffin cells are adrenergic even in the absence of epinephrine. Journal of Neurochemistry, 2020, 152, 299-314.	3.9	5
7	Combining the lack of chromogranins with chronic L-DOPA treatment affects motor activity in mice. Cell and Tissue Research, 2020, 380, 59-66.	2.9	0
8	Chromaffin Cells of the Adrenal Medulla: Physiology, Pharmacology, and Disease. , 2019, 9, 1443-1502.		45
9	Vesicular Transmitter Content in Chromaffin Cells Can Be Regulated via Extracellular ATP. ACS Chemical Neuroscience, 2019, 10, 4735-4740.	3.5	22
10	Extracellular ATP Regulates the Vesicular Pore Opening in Chromaffin Cells and Increases the Fraction Released During Individual Exocytosis Events. ACS Chemical Neuroscience, 2019, 10, 2459-2466.	3.5	32
11	Denseâ€core vesicle biogenesis and exocytosis in neurons lacking chromogranins A and B. Journal of Neurochemistry, 2018, 144, 241-254.	3.9	24
12	Old and emerging concepts on adrenal chromaffin cell stimulus-secretion coupling. Pflugers Archiv European Journal of Physiology, 2018, 470, 1-6.	2.8	4
13	Electrochemical Investigation of the Interaction between Catecholamines and ATP. Analytical Chemistry, 2018, 90, 1601-1607.	6.5	6
14	Coupling biological detection to liquid chromatography: a new tool in drug discovery. Naunyn-Schmiedeberg's Archives of Pharmacology, 2018, 391, 9-16.	3.0	2
15	How intravesicular composition affects exocytosis. Pflugers Archiv European Journal of Physiology, 2018, 470, 135-141.	2.8	13
16	Phases of the exocytotic fusion pore. FEBS Letters, 2018, 592, 3532-3541.	2.8	22
17	Distinct patterns of exocytosis elicited by Ca2+, Sr2+ and Ba2+ in bovine chromaffin cells. Pflugers Archiv European Journal of Physiology, 2018, 470, 1459-1471.	2.8	5
18	Observational Study to Assess the Safety and Clinical Effectiveness of the Hospital Universitario de		0

Canarias Massive Transfusion Protocol., 2018, 1, .

#	Article	IF	CITATIONS
19	Isolation of mouse chromaffin secretory vesicles and their division into 12 fractions. Analytical Biochemistry, 2017, 536, 1-7.	2.4	5
20	Chromogranins and the Quantum Release of Catecholamines. UNIPA Springer Series, 2017, , 249-260.	0.1	0
21	Standardize future device connections for computers. Nature, 2017, 552, 175-175.	27.8	Ο
22	Analyzing isolated blood vessel contraction in multi-well plates. Naunyn-Schmiedeberg's Archives of Pharmacology, 2016, 389, 521-528.	3.0	1
23	The intravesicular cocktail and its role in the regulation of exocytosis. Journal of Neurochemistry, 2016, 137, 897-903.	3.9	15
24	ATP: The crucial component of secretory vesicles. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4098-106.	7.1	65
25	Regulation of tumor growth by circulating full-length chromogranin A. Oncotarget, 2016, 7, 72716-72732.	1.8	18
26	Measuring the Contractile Response of Isolated Tissue Using an Image Sensor. Sensors, 2015, 15, 9179-9188.	3.8	3
27	Mice lacking chromogranins exhibit increased aggressive and depression-like behaviour. Behavioural Brain Research, 2015, 278, 98-106.	2.2	12
28	We need a global system to help identify new uses for existing drugs. BMJ, The, 2014, 348, g1806-g1806.	6.0	3
29	The interaction between chromogranin A and catecholamines governs exocytosis. FASEB Journal, 2014, 28, 4657-4667.	0.5	20
30	Chalcones as positive allosteric modulators of $\hat{1}\pm7$ nicotinic acetylcholine receptors: A new target for a privileged structure. European Journal of Medicinal Chemistry, 2014, 86, 724-739.	5.5	23
31	Chromogranin A in the Storage and Exocytosis of Catecholamines. , 2014, , 51.		Ο
32	The ATP or the natural history of neurotransmission. Purinergic Signalling, 2013, 9, 5-6.	2.2	17
33	Granins and Catecholamines. Advances in Pharmacology, 2013, 68, 93-113.	2.0	7
34	The role of chromogranins in the secretory pathway. Biomolecular Concepts, 2013, 4, 605-609.	2.2	9
35	An Inhibitor of Neuronal Exocytosis (DD04107) Displays Long-Lasting In Vivo Activity against Chronic Inflammatory and Neuropathic Pain. Journal of Pharmacology and Experimental Therapeutics, 2012, 341, 634-645.	2.5	20
36	Chromogranins A and B are key proteins in amine accumulation, but the catecholamine secretory pathway is conserved without them. FASEB Journal, 2012, 26, 430-438.	0.5	50

#	Article	IF	CITATIONS
37	The Functional Role of Chromogranins in Exocytosis. Journal of Molecular Neuroscience, 2012, 48, 317-322.	2.3	10
38	Vesicular Ca2+ mediates granule motion and exocytosis. Cell Calcium, 2012, 51, 338-341.	2.4	16
39	Preparation and Culture of Adrenal Chromaffin Cells. Methods in Molecular Biology, 2012, 846, 223-234.	0.9	12
40	Ouabain enhances exocytosis through the regulation of calcium handling by the endoplasmic reticulum of chromaffin cells. Cell Calcium, 2011, 50, 332-342.	2.4	11
41	Fluorescent Î ² -Blockers as Tools to Study Presynaptic Mechanisms of Neurosecretion. Pharmaceuticals, 2011, 4, 713-725.	3.8	7
42	Chromogranins A and B as Regulators of Vesicle Cargo and Exocytosis. Cellular and Molecular Neurobiology, 2010, 30, 1181-1187.	3.3	38
43	Intravesicular Factors Controlling Exocytosis in Chromaffin Cells. Cellular and Molecular Neurobiology, 2010, 30, 1359-1364.	3.3	12
44	The quantal secretion of catecholamines is impaired by the accumulation of βâ€adrenoceptor antagonists into chromaffin cell vesicles. British Journal of Pharmacology, 2010, 159, 1548-1556.	5.4	17
45	Chromogranins as regulators of exocytosis. Journal of Neurochemistry, 2010, 114, 335-343.	3.9	40
46	Chromogranin B Gene Ablation Reduces the Catecholamine Cargo and Decelerates Exocytosis in Chromaffin Secretory Vesicles. Journal of Neuroscience, 2010, 30, 950-957.	3.6	51
47	On the role of intravesicular calcium in the motion and exocytosis of secretory organelles. Communicative and Integrative Biology, 2009, 2, 71-73.	1.4	21
48	Histogenesis and morphofunctional characteristics of chromaffin cells. Acta Physiologica, 2008, 192, 145-163.	3.8	23
49	Measuring secretion in chromaffin cells using electrophysiological and electrochemical methods. Acta Physiologica, 2008, 192, 173-184.	3.8	45
50	Chromaffin cells at the beginning of the 21st century. Acta Physiologica, 2008, 192, 143-144.	3.8	3
51	Good Practices in Single-Cell Amperometry. Methods in Molecular Biology, 2008, 440, 297-313.	0.9	37
52	Intravesicular Calcium Release Mediates the Motion and Exocytosis of Secretory Organelles. Journal of Biological Chemistry, 2008, 283, 22383-22389.	3.4	50
53	The Crucial Role of Chromogranins in Storage and Exocytosis Revealed Using Chromaffin Cells from Chromogranin A Null Mouse. Journal of Neuroscience, 2008, 28, 3350-3358.	3.6	120
54	Chronic hypoxia upâ€regulates α _{1H} Tâ€type channels and lowâ€threshold catecholamine secretion in rat chromaffin cells. Journal of Physiology, 2007, 584, 149-165.	2.9	96

#	Article	IF	CITATIONS
55	Intragranular pH rapidly modulates exocytosis in adrenal chromaffin cells. Journal of Neurochemistry, 2006, 96, 324-334.	3.9	73
56	A rapid exocytosis mode in chromaffin cells with a neuronal phenotype. Journal of Neurochemistry, 2006, 99, 29-41.	3.9	19
57	Save the Lab in Montemar, Chile. Science, 2006, 311, 1866a-1866a.	12.6	0
58	Calcium Signaling and Exocytosis in Adrenal Chromaffin Cells. Physiological Reviews, 2006, 86, 1093-1131.	28.8	309
59	A simple way to build a grinder for carbon-fibre electrodes for amperometry or voltammetry. Pflugers Archiv European Journal of Physiology, 2005, 450, 280-282.	2.8	5
60	New Insights About the Functional Role of Chromogranins in the Latest Steps of Exocytosis. Current Medicinal Chemistry Immunology, Endocrine & Metabolic Agents, 2004, 4, 187-193.	0.2	0
61	New Roles of Myosin II during Vesicle Transport and Fusion in Chromaffin Cells. Journal of Biological Chemistry, 2004, 279, 27450-27457.	3.4	128
62	Hydralazine Reduces the Quantal Size of Secretory Events by Displacement of Catecholamines From Adrenomedullary Chromaffin Secretory Vesicles. Circulation Research, 2002, 91, 830-836.	4.5	28
63	Nongenomic Regulation of the Kinetics of Exocytosis by Estrogens. Journal of Pharmacology and Experimental Therapeutics, 2002, 301, 631-637.	2.5	25
64	Pharmacological Regulation of the Late Steps of Exocytosis. Annals of the New York Academy of Sciences, 2002, 971, 184-192.	3.8	24
65	A Novel Nongenomic Action of Estrogens. Annals of the New York Academy of Sciences, 2002, 971, 284-286.	3.8	6
66	New Approaches for Analysis of Amperometrical Recordings. Annals of the New York Academy of Sciences, 2002, 971, 647-654.	3.8	22
67	Morphological and functional characterization of beige mouse adrenomedullary secretory vesicles. Cell and Tissue Research, 2001, 304, 159-164.	2.9	6
68	Warning! perfusion syringes may not be inert. European Journal of Clinical Investigation, 2000, 30, 653-653.	3.4	0
69	Automatic analysis for amperometrical recordings of exocytosis. Journal of Neuroscience Methods, 2000, 103, 151-156.	2.5	81
70	Nitric Oxide Modulates a Late Step of Exocytosis. Journal of Biological Chemistry, 2000, 275, 20274-20279.	3.4	73
71	Functional Role of Chromogranins. , 2000, 482, 69-81.		8
72	Calcium channel subtypes and exocytosis in chromaffin cells: a different view from the intact rat adrenal. Naunyn-Schmiedeberg's Archives of Pharmacology, 1999, 360, 33-37.	3.0	16

#	Article	lF	CITATIONS
73	Interaction between G protein-operated receptors eliciting secretion in rat adrenals. Biochemical Pharmacology, 1997, 53, 317-325.	4.4	8
74	The rat adrenal gland in the study of the control of catecholamine secretion. Seminars in Cell and Developmental Biology, 1997, 8, 113-120.	5.0	9
75	Effects of External Osmotic Pressure on Vesicular Secretion from Bovine Adrenal Medullary Cells. Journal of Biological Chemistry, 1997, 272, 8325-8331.	3.4	75
76	Exocytotic release from individual granules exhibits similar properties at mast and chromaffin cells. Biophysical Journal, 1996, 71, 1633-1640.	0.5	72
77	Temporally resolved, independent stages of individual exocytotic secretion events. Biophysical Journal, 1996, 70, 1061-1068.	0.5	149
78	Otilonium: a potent blocker of neuronal nicotinic ACh receptors in bovine chromaffin cells. British Journal of Pharmacology, 1996, 117, 463-470.	5.4	8
79	Comparison of cytosolic Ca2+ and exocytosis responses from single rat and bovine chromaffin cells. Neuroscience, 1996, 71, 833-843.	2.3	22
80	Blocking effects of otilonium on Ca2+ channels and secretion in rat chromaffin cells. European Journal of Pharmacology, 1996, 298, 199-205.	3.5	11
81	Multiple calcium channel subtypes in isolated rat chromaffin cells. Pflugers Archiv European Journal of Physiology, 1995, 430, 55-63.	2.8	71
82	Localized L-type calcium channels control exocytosis in cat chromaffin cells. Pflugers Archiv European Journal of Physiology, 1994, 427, 348-354.	2.8	60
83	Histamine H1 receptor activation mediates the preferential release of adrenaline in the rat adrenal gland. Life Sciences, 1994, 54, 631-640.	4.3	26
84	Ionic mechanisms involved in the secretory effects of histamine in the rat adrenal medulla. European Journal of Pharmacology, 1993, 241, 189-194.	3.5	13
85	Inhibitory and contractile effects of okadaic acid on rat uterine muscle. European Journal of Pharmacology, 1992, 219, 473-476.	3.5	7
86	The effect of botulinum toxin type D on the triggered and constitutive exocytosis/endocytosis cycles in cultures of bovine adrenal medullary cells. FEBS Letters, 1992, 298, 118-122.	2.8	11
87	Electrically-evoked catecholamine release from cat adrenals. Biochemical Pharmacology, 1991, 42, 973-978.	4.4	19
88	lonic requirements of the endothelin response in aorta and portal vein Circulation Research, 1989, 65, 265-271.	4.5	18
89	Secretory and radioligand binding studies on muscarinic receptors in bovine and feline chromaffin cells Journal of Physiology, 1989, 418, 411-426.	2.9	39
90	Activation of sodium channels is not essential for endothelin induced vasoconstriction. Pflugers Archiv European Journal of Physiology, 1989, 413, 313-315.	2.8	8

#	Article	IF	CITATIONS
91	Tissue selectivity of endothelin. European Journal of Pharmacology, 1989, 165, 223-230.	3.5	53
92	Secretion from adrenaline- and noradrenaline-storing adrenomedullary cells is regulated by a common dihydropyridine-sensitive calcium channel. Brain Research, 1988, 456, 364-366.	2.2	9
93	M2 muscarinoceptor-associated ionophore at the cat adrenal medulla. Biochemical and Biophysical Research Communications, 1987, 144, 965-972.	2.1	25
94	Inactivation of potassium-evoked adrenomedullary catecholamine release in the presence of calcium, strontium or BAY-K-8644. FEBS Letters, 1986, 196, 34-38.	2.8	15
95	Effect of ethanol on neuromuscular function in rats. Its interaction with alcuronium. General Pharmacology, 1986, 17, 569-572.	0.7	5
96	Continuous monitoring of catecholamine release from perfused cat adrenals. Journal of Neuroscience Methods, 1986, 16, 289-300.	2.5	76
97	Cardiac and Extracardiac Activity of an Ethanolic Extract of Leaves ofIsoplexis canariensis. Planta Medica, 1984, 50, 307-309.	1.3	2
98	Effect of Anesthesia on rat respiration. A study in decerebrated, decerebrated-anesthetized and intact-brain preparations. Revista Española De FisiologÃa, 1984, 40, 53-61.	0.0	0