
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8814923/publications.pdf Version: 2024-02-01

SERCE ROCHE

#	Article	IF	CITATIONS
1	Regulation of Src tumor activity by its N-terminal intrinsically disordered region. Oncogene, 2022, 41, 960-970.	5.9	8
2	Oncogenic Signalling of PEAK2 Pseudokinase in Colon Cancer. Cancers, 2022, 14, 2981.	3.7	1
3	SHED-Dependent Oncogenic Signaling of the PEAK3 Pseudo-Kinase. Cancers, 2021, 13, 6344.	3.7	6
4	Src Family Tyrosine Kinases in Intestinal Homeostasis, Regeneration and Tumorigenesis. Cancers, 2020, 12, 2014.	3.7	16
5	Collagen Kinase Receptors as Potential Therapeutic Targets in Metastatic Colon Cancer. Frontiers in Oncology, 2020, 10, 125.	2.8	38
6	Roles of exosomes in metastatic colorectal cancer. American Journal of Physiology - Cell Physiology, 2019, 317, C869-C880.	4.6	28
7	Control of Tyrosine Kinase Signalling by Small Adaptors in Colorectal Cancer. Cancers, 2019, 11, 669.	3.7	7
8	SHEDding light on the role of Pragmin pseudo-kinases in cancer. American Journal of Cancer Research, 2019, 9, 449-454.	1.4	3
9	Inhibition of <scp>DDR</scp> 1― <scp>BCR</scp> signalling by nilotinib asÂaÂnew therapeutic strategy for metastatic colorectal cancer. EMBO Molecular Medicine, 2018, 10, .	6.9	82
10	Dimerization of the Pragmin Pseudo-Kinase Regulates Protein Tyrosine Phosphorylation. Structure, 2018, 26, 545-554.e4.	3.3	36
11	DDR1 inhibition as a new therapeutic strategy for colorectal cancer. Molecular and Cellular Oncology, 2018, 5, e1465882.	0.7	13
12	Crystal structure of a mammalian pseudokinase reveals an original dimerization. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e227-e227.	0.1	0
13	The Unique Domain Forms a Fuzzy Intramolecular Complex in Src Family Kinases. Structure, 2017, 25, 630-640.e4.	3.3	72
14	Syntenin mediates SRC function in exosomal cell-to-cell communication. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12495-12500.	7.1	114
15	Crystal structure of a mammalian pseudokinase reveals an original dimerization. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C1005-C1005.	0.1	0
16	TOM1L1 drives membrane delivery of MT1-MMP to promote ERBB2-induced breast cancer cell invasion. Nature Communications, 2016, 7, 10765.	12.8	37
17	Vesicular trafficking regulators are new players in breast cancer progression: Role of TOM1L1 in ERBB2-dependent invasion. Molecular and Cellular Oncology, 2016, 3, e1182241.	0.7	5
18	The role of small adaptor proteins in the control of oncogenic signaling driven by tyrosine kinases in human cancer. Oncotarget, 2016, 7, 11033-11055.	1.8	16

#	Article	IF	CITATIONS
19	<scp>CBL</scp> controls a tyrosine kinase network involving <scp>AXL</scp> , <scp>SYK</scp> and <scp>LYN</scp> in nilotinibâ€resistant chronic myeloid leukaemia. Journal of Pathology, 2015, 237, 14-24.	4.5	24
20	ABL Tyrosine Kinase Inhibition Variable Effects on the Invasive Properties of Different Triple Negative Breast Cancer Cell Lines. PLoS ONE, 2015, 10, e0118854.	2.5	13
21	Progastrin a new pro-angiogenic factor in colorectal cancer. Oncogene, 2015, 34, 3120-3130.	5.9	21
22	The SH3 Domain Acts as a Scaffold for the N-Terminal Intrinsically Disordered Regions of c-Src. Structure, 2015, 23, 893-902.	3.3	36
23	Contribution of phosphoproteomics in understanding SRC signaling in normal and tumor cells. Proteomics, 2015, 15, 232-244.	2.2	17
24	Abstract B16: Progastrin activates colon fibroblasts and participates to the dialogue between tumor epithelial cells and stromal fibroblasts in colorectal cancer. , 2015, , .		0
25	YES oncogenic activity is specified by its SH4 domain and regulates RAS/MAPK signaling in colon carcinoma cells. American Journal of Cancer Research, 2015, 5, 1972-87.	1.4	10
26	Suppressor of cytokine signaling 1 modulates invasion and metastatic potential of colorectal cancer cells. Molecular Oncology, 2014, 8, 942-955.	4.6	30
27	SLAP displays tumour suppressor functions in colorectal cancer via destabilization of the SRC substrate EPHA2. Nature Communications, 2014, 5, 3159.	12.8	32
28	The short form of RON is expressed in acute myeloid leukemia and sensitizes leukemic cells to cMET inhibitors. Leukemia, 2013, 27, 325-335.	7.2	17
29	Abstract 2085: The antileukemic drug nilotinib inhibits the invasive activity and the metastatic potential of colorectal cancer cells by targeting the receptor tyrosine kinase DDR1 , 2013, , .		0
30	Analysis of SRC Oncogenic Signaling in Colorectal Cancer by Stable Isotope Labeling with Heavy Amino Acids in Mouse Xenografts. Molecular and Cellular Proteomics, 2012, 11, 1937-1950.	3.8	30
31	Abstract 230: A novel quantitative phosphoproteomic approach in mouse xenograft models to identify Src oncogenic signaling in colorectal cancer. , 2012, , .		0
32	Abstract 855: The antileukemia drug nilotinib inhibits invasion and metastasis of colorectal cancer cells by targeting the receptor tyrosine kinase DDR1. , 2012, , .		0
33	Cbl Controls the Expression of Axl and Lyn Tyrosine Kinases Mediating Resistance to Nilotinib in Chronic Myeloid Leukemia Cells. Blood, 2012, 120, 3734-3734.	1.4	0
34	Oncogenic signaling by tyrosine kinases of the SRC family in advanced colorectal cancer. American Journal of Cancer Research, 2012, 2, 357-71.	1.4	30
35	Quantitative phosphoproteomics revealed interplay between Syk and Lyn in the resistance to nilotinib in chronic myeloid leukemia cells. Blood, 2011, 118, 2211-2221.	1.4	89
36	Specific Oncogenic Activity of the Src-Family Tyrosine Kinase c-Yes in Colon Carcinoma Cells. PLoS ONE, 2011, 6, e17237.	2.5	38

#	Article	IF	CITATIONS
37	Abstract 1981: Tumor suppressor functions of the Src-like adaptor protein (SLAP) in colorectal cancer cells. , 2011, , .		0
38	Abstract 3130: The short form of the receptor tyrosine kinase Ron is expressed in acute myeloid leukemia, regulated by methylation and sensitizes leukemic cells to c-Met inhibitors. , 2011, , .		0
39	A non-catalytic function of the Src family tyrosine kinases controls prolactin-induced Jak2 signaling. Cellular Signalling, 2010, 22, 415-426.	3.6	38
40	Src family tyrosine kinases-driven colon cancer cell invasion is induced by Csk membrane delocalization. Oncogene, 2010, 29, 1303-1315.	5.9	57
41	Quantitative Phosphoproteomics Identified a New Syk-Lyn-Axl Signalling Pathway Involved In Resistance to Nilotinib In Chronic Myeloid Leukemia Cells Blood, 2010, 116, 3376-3376.	1.4	0
42	Quantitative Phosphoproteomics Reveals a Cluster of Tyrosine Kinases That Mediates Src Invasive Activity in Advanced Colon Carcinoma Cells. Cancer Research, 2009, 69, 2279-2286.	0.9	103
43	Alternative Splicing Modulates Autoinhibition and SH3 Accessibility in the Src Kinase Fyn. Molecular and Cellular Biology, 2009, 29, 6438-6448.	2.3	31
44	Tyrosine Kinase Proteins profiling of Nilotinib Resistant Chronic Myelogenous Leukemia Cells Unravels a Tyrosine Kinase-Mediated Bypass Blood, 2009, 114, 2175-2175.	1.4	1
45	The Receptor Tyrosine Kinase RON Is Constitutively Activated in Acute Myeloid Leukemia and May Represent a New Therapeutic Target Blood, 2009, 114, 994-994.	1.4	0
46	The Src-like adaptor protein regulates PDGF-induced actin dorsal ruffles in a c-Cbl-dependent manner. Oncogene, 2008, 27, 3494-3500.	5.9	19
47	Cytoplasmic signalling by the câ€Abl tyrosine kinase in normal and cancer cells. Biology of the Cell, 2008, 100, 617-631.	2.0	124
48	The Csk-binding protein PAG regulates PDGF-induced Src mitogenic signaling via GM1. Journal of Cell Biology, 2008, 182, 603-614.	5.2	32
49	Evidence that Resistance to Nilotinib May Be Due to BCR-ABL, Pgp, or Src Kinase Overexpression. Cancer Research, 2008, 68, 9809-9816.	0.9	197
50	Lyn Kinase Overexpression Is One of the Mechanisms of Resistance to Nilotinib In Chronic Myeloid Leukemia. Blood, 2008, 112, 3181-3181.	1.4	2
51	The Tom1L1-Clathrin Heavy Chain Complex Regulates Membrane Partitioning of the Tyrosine Kinase Src Required for Mitogenic and Transforming Activities. Molecular and Cellular Biology, 2007, 27, 7631-7640.	2.3	20
52	The tyrosine kinase Abl is required for Src-transforming activity in mouse fibroblasts and human breast cancer cells. Oncogene, 2007, 26, 7313-7323.	5.9	56
53	Two distinct pools of Src family tyrosine kinases regulate PDGF-induced DNA synthesis and actin dorsal ruffles. Journal of Cell Science, 2006, 119, 2921-2934.	2.0	47
54	The Adaptor Protein Tom1L1 Is a Negative Regulator of Src Mitogenic Signaling Induced by Growth Factors. Molecular and Cellular Biology, 2006, 26, 1932-1947.	2.3	37

#	Article	IF	CITATIONS
55	Abl tyrosine kinase regulates a Rac/JNK and a Rac/Nox pathway for DNA synthesis and Myc expression induced by growth factors. Journal of Cell Science, 2005, 118, 3717-3726.	2.0	44
56	Adherens junctions and tight junctions are regulated via different pathways by progastrin in epithelial cells. Journal of Cell Science, 2003, 116, 1187-1197.	2.0	71
57	Cholecystokinin Stimulates Extracellular Signal-regulated Kinase through Activation of the Epidermal Growth Factor Receptor, Yes, and Protein Kinase C. Journal of Biological Chemistry, 2003, 278, 7065-7072.	3.4	64
58	Nucleophosmin-anaplastic lymphoma kinase of anaplastic large-cell lymphoma recruits, activates, and uses pp60c-src to mediate its mitogenicity. Blood, 2003, 103, 1464-1471.	1.4	81
59	A Function for Phosphoinositide 3-Kinase β Lipid Products in Coupling βγ to Ras Activation in Response to Lysophosphatidic Acid. Journal of Biological Chemistry, 2002, 277, 21167-21178.	3.4	71
60	Cyclin E and cyclin A are likely targets of Src for PDGF-induced DNA synthesis in fibroblasts. FEBS Letters, 2002, 526, 82-86.	2.8	13
61	Cloning of a novel phosphotyrosine binding domain containing molecule, Odin, involved in signaling by receptor tyrosine kinases. Oncogene, 2002, 21, 8029-8036.	5.9	48
62	c-Abl is an effector of Src for growth factor-induced c-myc expression and DNA synthesis. EMBO Journal, 2002, 21, 514-524.	7.8	109
63	The hepatitis B virus HBx protein induces adherens junction disruption in a src-dependent manner. Oncogene, 2001, 20, 3323-3331.	5.9	82
64	A Critical Role for Phosphoinositide 3-Kinase Upstream of Gab1 and SHP2 in the Activation of Ras and Mitogen-activated Protein Kinases by Epidermal Growth Factor. Journal of Biological Chemistry, 2001, 276, 8856-8864.	3.4	127
65	A Specific Role of Phosphatidylinositol 3–Kinase γ. Journal of Cell Biology, 2001, 152, 717-728.	5.2	55
66	A specific function for phosphatidylinositol 3-kinase α (p85α-p110α) in cell survival and for phosphatidylinositol 3-kinase β (p85α-p110β) in de novo DNA synthesis of human colon carcinoma cells. Oncogene, 2000, 19, 5083-5090.	5.9	132
67	Slap Negatively Regulates Src Mitogenic Function but Does Not Revert Src-Induced Cell Morphology Changes. Molecular and Cellular Biology, 2000, 20, 3396-3406.	2.3	47
68	Deregulation of the Cytoplasmic Tyrosine Kinase cSrc in the Absence of a Truncating Mutation at Codon 531 in Human Bladder Carcinoma. Biochemical and Biophysical Research Communications, 2000, 273, 425-430.	2.1	17
69	Identification of a Novel Immunoreceptor Tyrosine-based Activation Motif-containing Molecule, STAM2, by Mass Spectrometry and Its Involvement in Growth Factor and Cytokine Receptor Signaling Pathways. Journal of Biological Chemistry, 2000, 275, 38633-38639.	3.4	103
70	An Epidermal Growth Factor Receptor/Gab1 Signaling Pathway Is Required for Activation of Phosphoinositide 3-Kinase by Lysophosphatidic Acid. Journal of Biological Chemistry, 1999, 274, 32835-32841.	3.4	71
71	Src-like adaptor protein (Slap) is a negative regulator of mitogenesis. Current Biology, 1998, 8, 975-978.	3.9	67
72	Src Family Tyrosine Kinase Regulates Intracellular pH in Cardiomyocytes. Journal of Cell Biology, 1998, 141, 1637-1646.	5.2	61

#	Article	IF	CITATIONS
73	A Function for Phosphatidylinositol 3-Kinase β (p85α-p110β) in Fibroblasts during Mitogenesis: Requirement for Insulin- and Lysophosphatidic Acid-Mediated Signal Transduction. Molecular and Cellular Biology, 1998, 18, 7119-7129.	2.3	133
74	The Use of Microinjection to Study Signal Transduction in Mammalian Cells. , 1998, , 171-183.		0
75	Calcium Release at Fertilization in Starfish Eggs Is Mediated by Phospholipase CÎ ³ . Journal of Cell Biology, 1997, 138, 1303-1311.	5.2	134
76	Characterization of two different cytoplasmic protein tyrosine kinases from human breast cancer. Carcinogenesis, 1997, 18, 1463-1472.	2.8	4
77	Src and Ras are involved in separate pathways in epithelial cell scattering. EMBO Journal, 1997, 16, 5904-5913.	7.8	133
78	The Src SH3 Domain Is Required for DNA Synthesis Induced by Platelet-derived Growth Factor and Epidermal Growth Factor. Journal of Biological Chemistry, 1996, 271, 16807-16812.	3.4	48
79	DNA Synthesis Induced by Some but Not All Growth Factors Requires Src Family Protein Tyrosine Kinases. Molecular and Cellular Biology, 1995, 15, 1102-1109.	2.3	238
80	Gastrin-CCK-B type receptors on human T lymphoblastoid Jurkat cells. American Journal of Physiology - Renal Physiology, 1995, 268, G522-G529.	3.4	5
81	Requirement for Src Family Protein Tyrosine Kinases in G ₂ for Fibroblast Cell Division. Science, 1995, 269, 1567-1569.	12.6	253
82	The catalytic subunit of phosphatidylinositol 3-kinase is a substrate for the activated platelet-derived growth factor receptor, but not for middle-T antigen-pp60c- <i>src</i> complexes. Biochemical Journal, 1994, 301, 703-711.	3.7	30
83	The phosphatidylinositol 3-kinase alpha is required for DNA synthesis induced by some, but not all, growth factors Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 9185-9189.	7.1	261
84	Receptor-operated Ca2+ channels in gastric parietal cells: gastrin and carbachol induce Ca2+ influx in depleting intracellular Ca2+ stores. Biochemical Journal, 1993, 289, 117-124.	3.7	15
85	Biphasic kinetics of inositol 1,4,5-trisphosphate accumulation, in gastrin-stimulated parietal cells Effects of pertussis toxin and extracellular calcium. FEBS Letters, 1991, 282, 147-151.	2.8	19
86	"Gastrin―and "CCK―receptors on histamine-and somatostatin-containing cells from rabbit fundic mucosa —I. Biochemical Pharmacology, 1991, 42, 765-770.	4.4	43
87	"Gastrin―and "CCK―receptors on histamine-and somatostatin-containing cells from rabbit fundic mucosa—II. Biochemical Pharmacology, 1991, 42, 771-776.	4.4	36
88	Relationship between inositol 1,4,5-trisphosphate mass level and [14C]aminopyrine uptake in gastrin-stimulated parietal cells. Molecular and Cellular Endocrinology, 1991, 77, 109-113.	3.2	8
89	Characterization of a gastrin-type receptor on rabbit gastric parietal cells using L365,260 and L364,718. American Journal of Physiology - Renal Physiology, 1991, 260, G182-G188.	3.4	13
90	Involvement of a pertussis toxin-sensitive G protein in the action of gastrin on gastric parietal cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 1990, 1055, 287-294.	4.1	30

#	Article	IF	CITATIONS
91	Gastrin and CCK-8 induce inositol 1,4,5-trisphosphate formation in rabbit gastric parietal cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 1989, 1014, 313-318.	4.1	21
92	Dimerization of the Pragmin Pseudo-Kinase Regulates Protein Tyrosine Phosphorylation. SSRN Electronic Journal, 0, , .	0.4	0