
Stephen G Oliver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8813550/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Neighborhood of the Spike Gene Is a Hotspot for Modular Intertypic Homologous and Nonhomologous Recombination in Coronavirus Genomes. Molecular Biology and Evolution, 2022, 39, .	8.9	30
2	The Remarkable Evolutionary Plasticity of Coronaviruses by Mutation and Recombination: Insights for the COVID-19 Pandemic and the Future Evolutionary Paths of SARS-CoV-2. Viruses, 2022, 14, 78.	3.3	64
3	From Petri Plates to Petri Nets, a revolution in yeast biology. FEMS Yeast Research, 2022, , .	2.3	Ο
4	Comparative Analysis of SARS-CoV-2 Variants of Concern, Including Omicron, Highlights Their Common and Distinctive Amino Acid Substitution Patterns, Especially at the Spike ORF. Viruses, 2022, 14, 707.	3.3	30
5	Fission stories: using PomBase to understand <i>Schizosaccharomyces pombe</i> biology. Genetics, 2022, 220, .	2.9	60
6	Combination of Genome-Scale Models and Bioreactor Dynamics to Optimize the Production of Commodity Chemicals. Frontiers in Molecular Biosciences, 2022, 9, 855735.	3.5	0
7	Data intelligence for process performance prediction in biologics manufacturing. Computers and Chemical Engineering, 2021, 146, 107226.	3.8	9
8	The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Research, 2021, 49, D325-D334.	14.5	2,416
9	Yeast Double Transporter Gene Deletion Library for Identification of Xenobiotic Carriers in Low or High Throughput. MBio, 2021, 12, e0322121.	4.1	5
10	Extending the Modeling and Analysis Capabilities of Continuous Petri Nets by Flexible Nets. , 2021, , .		2
11	Steady State Analysis of Flexible Nets. IEEE Transactions on Automatic Control, 2020, 65, 2510-2525.	5.7	5
12	A unifying modelling formalism for the integration of stoichiometric and kinetic models. Journal of the Royal Society Interface, 2020, 17, 20200341.	3.4	3
13	Comparative Analysis of the Core Proteomes among the Pseudomonas Major Evolutionary Groups Reveals Species-Specific Adaptations for Pseudomonas aeruginosa and Pseudomonas chlororaphis. Diversity, 2020, 12, 289.	1.7	37
14	fnyzer: A Python Package for the Analysis of Flexible Nets. Lecture Notes in Computer Science, 2020, , 349-355.	1.3	2
15	Metaheuristic approaches in biopharmaceutical process development data analysis. Bioprocess and Biosystems Engineering, 2019, 42, 1399-1408.	3.4	9
16	Metabolic response to Parkinson's disease recapitulated by the haploinsufficient diploid yeast cells hemizygous for the adrenodoxin reductase gene. Molecular Omics, 2019, 15, 340-347.	2.8	0
17	Flexible Nets: a modeling formalism for dynamic systems with uncertain parameters. Discrete Event Dynamic Systems: Theory and Applications, 2019, 29, 367-392.	1.5	4
18	Low complexity regions in the proteins of prokaryotes perform important functional roles and are highly conserved. Nucleic Acids Research, 2019, 47, 9998-10009.	14.5	44

#	Article	IF	CITATIONS
19	Determination of the Global Pattern of Gene Expression in Yeast Cells by Intracellular Levels of Guanine Nucleotides. MBio, 2019, 10, .	4.1	9
20	PomBase 2018: user-driven reimplementation of the fission yeast database provides rapid and intuitive access to diverse, interconnected information. Nucleic Acids Research, 2019, 47, D821-D827.	14.5	157
21	High-energy guanine nucleotides as a signal capable of linking growth to cellular energy status via the control of gene transcription. Current Genetics, 2019, 65, 893-897.	1.7	10
22	Hidden in plain sight: what remains to be discovered in the eukaryotic proteome?. Open Biology, 2019, 9, 180241.	3.6	80
23	Enhancing the functionality of a microscale bioreactor system as an industrial process development tool for mammalian perfusion culture. Biotechnology and Bioengineering, 2019, 116, 1315-1325.	3.3	16
24	Transcriptional regulation of the genes involved in protein metabolism and processing in <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2019, 19, .	2.3	1
25	Extension of the yeast metabolic model to include iron metabolism and its use to estimate global levels of ironâ€recruiting enzyme abundance from cofactor requirements. Biotechnology and Bioengineering, 2019, 116, 610-621.	3.3	15
26	The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Research, 2019, 47, D330-D338.	14.5	3,474
27	A heuristic approach to handling missing data in biologics manufacturing databases. Bioprocess and Biosystems Engineering, 2019, 42, 657-663.	3.4	9
28	Modeling, analyzing and controlling hybrid systems by Guarded Flexible Nets. Nonlinear Analysis: Hybrid Systems, 2019, 32, 131-146.	3.5	6
29	The subcellular organisation of Saccharomyces cerevisiae. Current Opinion in Chemical Biology, 2019, 48, 86-95.	6.1	26
30	Yeast Systems Biology: The Continuing Challenge of Eukaryotic Complexity. Methods in Molecular Biology, 2019, 2049, 3-13.	0.9	1
31	Mapping the Saccharomyces cerevisiae Spatial Proteome with High Resolution Using hyperLOPIT. Methods in Molecular Biology, 2019, 2049, 165-190.	0.9	8
32	A Protocol to Map the Spatial Proteome Using HyperLOPIT in Saccharomyces cerevisiae. Bio-protocol, 2019, 9, e3303.	0.4	2
33	Evaluation of the ability of commercial wine yeasts to form biofilms (mats) and adhere to plastic: implications for the microbiota of the winery environment. FEMS Microbiology Ecology, 2018, 94, .	2.7	10
34	Handling variability and incompleteness of biological data by flexible nets: a case study for Wilson disease. Npj Systems Biology and Applications, 2018, 4, 7.	3.0	13
35	Plasmodium dihydrofolate reductase is a second enzyme target for the antimalarial action of triclosan. Scientific Reports, 2018, 8, 1038.	3.3	31
36	Diffusion-Limited Growth of Microbial Colonies. Scientific Reports, 2018, 8, 5992.	3.3	26

#	Article	IF	CITATIONS
37	TAMMiCol: Tool for analysis of the morphology of microbial colonies. PLoS Computational Biology, 2018, 14, e1006629.	3.2	7
38	Saccharomyces cerevisiae adapted to grow in the presence of low-dose rapamycin exhibit altered amino acid metabolism. Cell Communication and Signaling, 2018, 16, 85.	6.5	13
39	Process development for the continuous production of heterologous proteins by the industrial yeast, <i>Komagataella phaffii</i> . Biotechnology and Bioengineering, 2018, 115, 2962-2973.	3.3	16
40	Antiplasmodial and trypanocidal activity of violacein and deoxyviolacein produced from synthetic operons. BMC Biotechnology, 2018, 18, 22.	3.3	32
41	Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Research, 2017, 45, D331-D338.	14.5	1,838
42	The Pivotal Role of Protein Phosphorylation in the Control of Yeast Central Metabolism. G3: Genes, Genomes, Genetics, 2017, 7, 1239-1249.	1.8	18
43	Spinal motor neuron protein supersaturation patterns are associated with inclusion body formation in ALS. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3935-E3943.	7.1	91
44	Cholinergic neuron gene expression differences captured by translational profiling in a mouse model of Alzheimer's disease. Neurobiology of Aging, 2017, 57, 104-119.	3.1	24
45	Quantifying the dominant growth mechanisms of dimorphic yeast using a lattice-based model. Journal of the Royal Society Interface, 2017, 14, 20170314.	3.4	16
46	Metabolic modeling to identify engineering targets for <i>Komagataella phaffii</i> : The effect of biomass composition on gene target identification. Biotechnology and Bioengineering, 2017, 114, 2605-2615.	3.3	16
47	Bacterial Signaling Nucleotides Inhibit Yeast Cell Growth by Impacting Mitochondrial and Other Specifically Eukaryotic Functions. MBio, 2017, 8, .	4.1	10
48	Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. GigaScience, 2017, 6, 1-11.	6.4	602
49	CamOptimus: a tool for exploiting complex adaptive evolution to optimize experiments and processes in biotechnology. Microbiology (United Kingdom), 2017, 163, 829-839.	1.8	9
50	Model organism databases: essential resources that need the support of both funders and users. BMC Biology, 2016, 14, 49.	3.8	46
51	Yeast-Based High-Throughput Screens to Identify Novel Compounds Active against Brugia malayi. PLoS Neglected Tropical Diseases, 2016, 10, e0004401.	3.0	24
52	Response to †The Need for Speed', by Matsson et al Trends in Pharmacological Sciences, 2016, 37, 245-246.	8.7	2
53	The metabolome 18 years on: a concept comes of age. Metabolomics, 2016, 12, 148.	3.0	95
54	The Challenges of Interpreting Phosphoproteomics Data: A Critical View Through the Bioinformatics Lens. Lecture Notes in Computer Science, 2016, , 196-204.	1.3	3

#	Article	IF	CITATIONS
55	CLUSTERnGO: a user-defined modelling platform for two-stage clustering of time-series data. Bioinformatics, 2016, 32, 388-397.	4.1	7
56	Alzheimer's as a Systems-Level Disease Involving the Interplay of Multiple Cellular Networks. Methods in Molecular Biology, 2016, 1303, 3-48.	0.9	33
57	Chronological Lifespan in Yeast Is Dependent on the Accumulation of Storage Carbohydrates Mediated by Yak1, Mck1 and Rim15 Kinases. PLoS Genetics, 2016, 12, e1006458.	3.5	51
58	A Tool for Multiple Targeted Genome Deletions that Is Precise, Scar-Free, and Suitable for Automation. PLoS ONE, 2015, 10, e0142494.	2.5	1
59	Fitting Transporter Activities to Cellular Drug Concentrations and Fluxes: Why the Bumblebee Can Fly. Trends in Pharmacological Sciences, 2015, 36, 710-723.	8.7	24
60	Biomass composition: the "elephant in the room―of metabolic modelling. Metabolomics, 2015, 11, 1690-1701.	3.0	58
61	Identification and Deconvolution of Cross-Resistance Signals from Antimalarial Compounds Using Multidrug-Resistant Plasmodium falciparum Strains. Antimicrobial Agents and Chemotherapy, 2015, 59, 1110-1118.	3.2	34
62	Quantifying Two-Dimensional Filamentous and Invasive Growth Spatial Patterns in Yeast Colonies. PLoS Computational Biology, 2015, 11, e1004070.	3.2	14
63	PomBase 2015: updates to the fission yeast database. Nucleic Acids Research, 2015, 43, D656-D661.	14.5	95
64	Cheaper faster drug development validated by the repositioning of drugs against neglected tropical diseases. Journal of the Royal Society Interface, 2015, 12, 20141289.	3.4	97
65	Membrane transporter engineering in industrial biotechnology and whole cell biocatalysis. Trends in Biotechnology, 2015, 33, 237-246.	9.3	167
66	The Yeast GSK-3 Homologue Mck1 Is a Key Controller of Quiescence Entry and Chronological Lifespan. PLoS Genetics, 2015, 11, e1005282.	3.5	18
67	The TRiC/CCT Chaperone Is Implicated in Alzheimer's Disease Based on Patient GWAS and an RNAi Screen in Aβ-Expressing Caenorhabditis elegans. PLoS ONE, 2014, 9, e102985.	2.5	34
68	How drugs get into cells: tested and testable predictions to help discriminate between transporter-mediated uptake and lipoidal bilayer diffusion. Frontiers in Pharmacology, 2014, 5, 231.	3.5	136
69	The harder we work …. Yeast, 2014, 31, 81-82.	1.7	0
70	Canto: an online tool for community literature curation. Bioinformatics, 2014, 30, 1791-1792.	4.1	41
71	A protocol for the subcellular fractionation of Saccharomyces cerevisiae using nitrogen cavitation and density gradient centrifugation. Yeast, 2014, 31, 127-135.	1.7	12
72	Yeast cells with impaired drug resistance accumulate glycerol and glucose. Molecular BioSystems, 2014, 10, 93-102.	2.9	12

#	Article	IF	CITATIONS
73	Improving functional annotation for industrial microbes: a case study with Pichia pastoris. Trends in Biotechnology, 2014, 32, 396-399.	9.3	23
74	1 Yeast as a Model for Systems Biology Studies on Complex Diseases. , 2014, , 3-30.		2
75	esyN: Network Building, Sharing and Publishing. PLoS ONE, 2014, 9, e106035.	2.5	59
76	Investigating the physiological response of Pichia (Komagataella) pastoris GS115 to the heterologous expression of misfolded proteins using chemostat cultures. Applied Microbiology and Biotechnology, 2013, 97, 9747-9762.	3.6	47
77	Predicting complex phenotype–genotype interactions to enable yeast engineering: <i>Saccharomyces cerevisiae</i> as a model organism and a cell factory. Biotechnology Journal, 2013, 8, 1017-1034.	3.5	20
78	The promiscuous binding of pharmaceutical drugs and their transporter-mediated uptake into cells: what we (need to) know and how we can do so. Drug Discovery Today, 2013, 18, 218-239.	6.4	130
79	A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes. FEBS Letters, 2013, 587, 2832-2841.	2.8	113
80	Copy-number variation of cancer-gene orthologs is sufficient to induce cancer-like symptoms in Saccharomyces cerevisiae. BMC Biology, 2013, 11, 24.	3.8	16
81	Yeast Systems Biology. , 2013, , 343-365.		6
82	FYPO: the fission yeast phenotype ontology. Bioinformatics, 2013, 29, 1671-1678.	4.1	53
83	Control analysis of the eukaryotic cell cycle using gene copy-number series in yeast tetraploids. BMC Genomics, 2013, 14, 744.	2.8	4
84	Synergistic effects of TOR and proteasome pathways on the yeast transcriptome and cell growth. Open Biology, 2013, 3, 120137.	3.6	21
85	Yeast-based automated high-throughput screens to identify anti-parasitic lead compounds. Open Biology, 2013, 3, 120158.	3.6	32
86	Evaluation and Properties of the Budding Yeast Phosphoproteome. Molecular and Cellular Proteomics, 2012, 11, M111.009555.	3.8	44
87	PomBase: a comprehensive online resource for fission yeast. Nucleic Acids Research, 2012, 40, D695-D699.	14.5	288
88	A prototrophic deletion mutant collection for yeast metabolomics and systems biology. Nature Biotechnology, 2012, 30, 1176-1178.	17.5	107
89	Evaluation of industrial Saccharomyces cerevisiae strains for ethanol production from biomass. Biomass and Bioenergy, 2012, 45, 230-238.	5.7	63
90	The genetic control of growth rate: a systems biology study in yeast. BMC Systems Biology, 2012, 6, 4.	3.0	49

#	Article	IF	CITATIONS
91	Short- and long-term dynamic responses of the metabolic network and gene expression in yeast to a transient change in the nutrient environment. Molecular BioSystems, 2012, 8, 1760.	2.9	6
92	Genomeâ€wide analysis of longevity in nutrientâ€deprived <i>Saccharomyces cerevisiae</i> reveals importance of recycling in maintaining cell viability. Environmental Microbiology, 2012, 14, 1249-1260.	3.8	21
93	Phenomic and transcriptomic analyses reveal that autophagy plays a major role in desiccation tolerance in Saccharomyces cerevisiae. Molecular BioSystems, 2011, 7, 139-149.	2.9	35
94	Protein Production in Saccharomyces cerevisiae for Systems Biology Studies. Methods in Enzymology, 2011, 500, 197-212.	1.0	6
95	An integrated approach to characterize genetic interaction networks in yeast metabolism. Nature Genetics, 2011, 43, 656-662.	21.4	194
96	Haploinsufficiency and the sex chromosomes from yeasts to humans. BMC Biology, 2011, 9, 15.	3.8	26
97	Genome-wide assessment of the carriers involved in the cellular uptake of drugs: a model system in yeast. BMC Biology, 2011, 9, 70.	3.8	59
98	Pharmaceutical drug transport: the issues and the implications that it is essentially carrier-mediated only. Drug Discovery Today, 2011, 16, 704-714.	6.4	160
99	The yin and yang of yeast: biodiversity research and systems biology as complementary forces driving innovation in biotechnology. Biotechnology Letters, 2011, 33, 477-487.	2.2	5
100	How yeast re-programmes its transcriptional profile in response to different nutrient impulses. BMC Systems Biology, 2011, 5, 148.	3.0	37
101	On the formalization and reuse of scientific research. Journal of the Royal Society Interface, 2011, 8, 1440-1448.	3.4	15
102	Absolute Quantification of the Glycolytic Pathway in Yeast:. Molecular and Cellular Proteomics, 2011, 10, M111.007633.	3.8	70
103	The role of proteosome-mediated proteolysis in modulating potentially harmful transcription factor activity in <i>Saccharomyces cerevisiae</i> . Bioinformatics, 2011, 27, i283-i287.	4.1	3
104	JmjN interacts with JmjC to ensure selective proteolysis of Gis1 by the proteasome. Microbiology (United Kingdom), 2011, 157, 2694-2701.	1.8	28
105	Genome-wide analysis of yeast stress survival and tolerance acquisition to analyze the central trade-off between growth rate and cellular robustness. Molecular Biology of the Cell, 2011, 22, 4435-4446.	2.1	138
106	Functional Expression of Parasite Drug Targets and Their Human Orthologs in Yeast. PLoS Neglected Tropical Diseases, 2011, 5, e1320.	3.0	29
107	Yeast Systems Biology: The Challenge of Eukaryotic Complexity. Methods in Molecular Biology, 2011, 759, 3-28.	0.9	10
108	Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains. Nature Communications, 2010, 1, 145.	12.8	100

#	Article	IF	CITATIONS
109	Metabolic flux analysis for recombinant protein production by <i>Pichia pastoris</i> using dual carbon sources: Effects of methanol feeding rate. Biotechnology and Bioengineering, 2010, 105, 317-329.	3.3	60
110	Conditional cell-wall mutants of Saccharomyces cerevisiae as delivery vehicles for therapeutic agents in vivo to the GI tract. Journal of Biotechnology, 2010, 147, 136-143.	3.8	9
111	Nutrient control of eukaryote cell growth: a systems biology study in yeast. BMC Biology, 2010, 8, 68.	3.8	89
112	Evolutionary Systems Biology of Amino Acid Biosynthetic Cost in Yeast. PLoS ONE, 2010, 5, e11935.	2.5	57
113	Posttranslational regulation impacts the fate of duplicated genes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2967-2971.	7.1	65
114	The Transcription Activity of Gis1 Is Negatively Modulated by Proteasome-mediated Limited Proteolysis. Journal of Biological Chemistry, 2010, 285, 6465-6476.	3.4	22
115	Further developments towards a genome-scale metabolic model of yeast. BMC Systems Biology, 2010, 4, 145.	3.0	95
116	Make Way for Robot Scientists. Science, 2009, 325, 945-945.	12.6	10
117	Cis1 is required for transcriptional reprogramming of carbon metabolism and the stress response during transition into stationary phase in yeast. Microbiology (United Kingdom), 2009, 155, 1690-1698.	1.8	58
118	Information management for high content live cell imaging. BMC Bioinformatics, 2009, 10, 226.	2.6	4
119	The Robot Scientist Adam. Computer, 2009, 42, 46-54.	1.1	28
120	Global gene expression in recombinant and non-recombinant yeast Saccharomyces cerevisiae in three different metabolic states. Biotechnology Advances, 2009, 27, 1092-1117.	11.7	14
121	Fedâ€batch methanol feeding strategy for recombinant protein production by <i>Pichia pastoris</i> in the presence of coâ€substrate sorbitol. Yeast, 2009, 26, 473-484.	1.7	102
122	A structured kinetic model for recombinant protein production by Mut+ strain of Pichia pastoris. Chemical Engineering Science, 2009, 64, 5028-5035.	3.8	20
123	The 2008 update of the Aspergillus nidulans genome annotation: A community effort. Fungal Genetics and Biology, 2009, 46, S2-S13.	2.1	99
124	The Automation of Science. Science, 2009, 324, 85-89.	12.6	458
125	A metabolomic and multivariate statistical process to assess the effects of genotoxins in Saccharomycescerevisiae. Molecular BioSystems, 2009, 5, 1913.	2.9	9
126	Implications of the Dominant Role of Transporters in Drug Uptake by Cells (Supplementary Material). Current Topics in Medicinal Chemistry, 2009, 9, 163-181.	2.1	81

#	Article	IF	CITATIONS
127	Exometabolic and transcriptional response in relation to phenotype and gene copy number in respirationâ€related deletion mutants of <i>S. cerevisiae</i> . Yeast, 2008, 25, 661-672.	1.7	7
128	A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nature Biotechnology, 2008, 26, 1155-1160.	17.5	530
129	Identification and characterization of high-flux-control genes of yeast through competition analyses in continuous cultures. Nature Genetics, 2008, 40, 113-117.	21.4	93
130	Data capture in bioinformatics: requirements and experiences with Pedro. BMC Bioinformatics, 2008, 9, 183.	2.6	13
131	Performing statistical analyses on quantitative data in Taverna workflows: An example using R and maxdBrowse to identify differentially-expressed genes from microarray data. BMC Bioinformatics, 2008, 9, 334.	2.6	38
132	Choose your partners: dimerization in eukaryotic transcription factors. Trends in Biochemical Sciences, 2008, 33, 220-229.	7.5	229
133	ISPIDER Central: an integrated database web-server for proteomics. Nucleic Acids Research, 2008, 36, W485-W490.	14.5	18
134	Integration of Metabolic Modeling and Phenotypic Data in Evaluation and Improvement of Ethanol Production Using Respiration-Deficient Mutants of <i>Saccharomyces cerevisiae</i> . Applied and Environmental Microbiology, 2008, 74, 5809-5816.	3.1	23
135	Systems biology of energetic and atomic costs in the yeast transcriptome, proteome, and metabolome. Nature Precedings, 2008, , .	0.1	2
136	Systems biology of energetic and atomic costs in the yeast transcriptome, proteome, and metabolome. Nature Precedings, 2008, , .	0.1	3
137	Comparative Genome Analysis of Filamentous Fungi Reveals Gene Family Expansions Associated with Fungal Pathogenesis. PLoS ONE, 2008, 3, e2300.	2.5	169
138	9 Transcript Analysis: A Microarray Approach. Methods in Microbiology, 2007, , 189-703.	0.8	2
139	Global Phenotype Screening and Transcript Analysis Outlines the Inhibitory Mode(s) of Action of Two Amphibian-Derived, α-Helical, Cationic Peptides on <i>Saccharomyces cerevisiae</i> . Antimicrobial Agents and Chemotherapy, 2007, 51, 3948-3959.	3.2	34
140	Plasticity of genetic interactions in metabolic networks of yeast. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2307-2312.	7.1	185
141	Genotypic and Physiological Characterization of Saccharomyces boulardii, the Probiotic Strain of Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2007, 73, 2458-2467.	3.1	151
142	Evaluation of predicted network modules in yeast metabolism using NMR-based metabolite profiling. Genome Research, 2007, 17, 510-519.	5.5	64
143	Comparative genome analysis across a kingdom of eukaryotic organisms: Specialization and diversification in the Fungi. Genome Research, 2007, 17, 1809-1822.	5.5	94
144	Cellular Processes and Pathways That Protect Saccharomyces cerevisiae Cells against the Plasma Membrane-Perturbing Compound Chitosan. Eukaryotic Cell, 2007, 6, 600-608.	3.4	62

#	Article	IF	CITATIONS
145	Specificity in protein interactions and its relationship with sequence diversity and coevolution. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7999-8004.	7.1	114
146	21 Metabolic Control in the Eukaryotic Cell, a Systems Biology Perspective. Methods in Microbiology, 2007, , 527-549.	0.8	3
147	1 Introduction to Functional Analysis in Yeast. Methods in Microbiology, 2007, 36, 1-21.	0.8	2
148	Protein Interactions from Complexes: A Structural Perspective. Comparative and Functional Genomics, 2007, 2007, 1-5.	2.0	16
149	A Methodology for Comparative Functional Genomics. Journal of Integrative Bioinformatics, 2007, 4, 112-122.	1.5	1
150	Transcriptional and metabolic response of Saccharomyces cerevisiae to a nutritional perturbation when under stress. Journal of Biotechnology, 2007, 131, S14-S15.	3.8	0
151	Application of the comprehensive set of heterozygous yeast deletion mutants to elucidate the molecular basis of cellular chromium toxicity. Genome Biology, 2007, 8, R268.	9.6	57
152	All duplicates are not equal: the difference between small-scale and genome duplication. Genome Biology, 2007, 8, R209.	9.6	163
153	Growth control of the eukaryote cell: a systems biology study in yeast. Journal of Biology, 2007, 6, 4.	2.7	234
154	Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nature Biotechnology, 2007, 25, 221-231.	17.5	1,047
155	The Functional Genomics Experiment model (FuGE): an extensible framework for standards in functional genomics. Nature Biotechnology, 2007, 25, 1127-1133.	17.5	96
156	Flux Balance Analysis of a Genome-Scale Yeast Model Constrained by Exometabolomic Data Allows Metabolic System Identification of Genetically Different Strains. Biotechnology Progress, 2007, 23, 320-326.	2.6	30
157	A protein interaction atlas for the nuclear receptors: properties and quality of a hub-based dimerisation network. BMC Systems Biology, 2007, 1, 34.	3.0	38
158	e-Fungi: a data resource for comparative analysis of fungal genomes. BMC Genomics, 2007, 8, 426.	2.8	32
159	A kingdom-specific protein domain HMM library for improved annotation of fungal genomes. BMC Genomics, 2007, 8, 97.	2.8	12
160	Storing, Searching, and Disseminating Experimental Proteomics Data. , 2007, , 472-483.		0
161	Automated tracking of gene expression in individual cells and cell compartments. Journal of the Royal Society Interface, 2006, 3, 787-794.	3.4	59
162	Mapping Pathways and Phenotypes by Systematic Gene Overexpression. Molecular Cell, 2006, 21, 319-330.	9.7	618

#	Article	IF	CITATIONS
163	The relative merits of the tetO2 andtetO7 promoter systems for the functional analysis of heterologous genes in yeast and a compilation of essential yeast genes withtetO2 promoter substitutions. Yeast, 2006, 23, 325-331.	1.7	17
164	Annotation of unknown yeast ORFs by correlation analysis of microarray data and extensive literature searches. Yeast, 2006, 23, 553-571.	1.7	9
165	Chance and necessity in the evolution of minimal metabolic networks. Nature, 2006, 440, 667-670.	27.8	219
166	Integrative investigation of metabolic and transcriptomic data. BMC Bioinformatics, 2006, 7, 203.	2.6	31
167	MeMo: a hybrid SQL/XML approach to metabolomic data management for functional genomics. BMC Bioinformatics, 2006, 7, 281.	2.6	37
168	Model-driven user interfaces for bioinformatics data resources: regenerating the wheel as an alternative to reinventing it. BMC Bioinformatics, 2006, 7, 532.	2.6	11
169	Reduction/oxidation-phosphorylation control of DNA binding in the bZIP dimerization network. BMC Genomics, 2006, 7, 107.	2.8	27
170	Phenotypic Activation to Discover Biological Pathways and Kinase Substrates. Cell Cycle, 2006, 5, 1397-1402.	2.6	18
171	From genomes to systems: the path with yeast. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 477-482.	4.0	37
172	Metabolic footprinting and systems biology: the medium is the message. Nature Reviews Microbiology, 2005, 3, 557-565.	28.6	373
173	The next wave in metabolome analysis. Trends in Biotechnology, 2005, 23, 544-546.	9.3	204
174	Chromosome evolution in eukaryotes: a multi-kingdom perspective. Trends in Genetics, 2005, 21, 673-682.	6.7	238
175	Effect of dataset selection on the topological interpretation of protein interaction networks. BMC Genomics, 2005, 6, 131.	2.8	19
176	A laser desorption ionisation mass spectrometry approach for high throughput metabolomics. Metabolomics, 2005, 1, 243-250.	3.0	27
177	Doxycycline, the drug used to control thetet-regulatable promoter system, has no effect on global gene expression inSaccharomyces cerevisiae. Yeast, 2005, 22, 565-569.	1.7	51
178	Proteomics data representation and management. , 2005, , .		0
179	Towards Integrative Functional Genomics Using Yeast as a Reference Model. , 2005, , 9-29.		2
180	Transcriptome Analysis of Recombinant Protein Secretion by Aspergillus nidulans and the Unfolded-Protein Response In Vivo. Applied and Environmental Microbiology, 2005, 71, 2737-2747.	3.1	83

#	Article	IF	CITATIONS
181	Production of Ethanol from Starch by Respiration-Deficient Recombinant Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2005, 71, 6443-6445.	3.1	47
182	Application of TOF-SIMS with Chemometrics To Discriminate between Four Different Yeast Strains from the Species Candida glabrata and Saccharomyces cerevisiae. Analytical Chemistry, 2005, 77, 1740-1745.	6.5	55
183	Genome-wide analysis of the context-dependence of regulatory networks. Genome Biology, 2005, 6, 206.	9.6	13
184	Pedro: a configurable data entry tool for XML. Bioinformatics, 2004, 20, 2463-2465.	4.1	24
185	Comparative Genomic Hybridization Provides New Insights Into the Molecular Taxonomy of the Saccharomyces Sensu Stricto Complex. Genome Research, 2004, 14, 1043-1051.	5.5	62
186	Global analysis of nutrient control of gene expression in Saccharomyces cerevisiae during growth and starvation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3148-3153.	7.1	120
187	A common open representation of mass spectrometry data and its application to proteomics research. Nature Biotechnology, 2004, 22, 1459-1466.	17.5	724
188	A proposed framework for the description of plant metabolomics experiments and their results. Nature Biotechnology, 2004, 22, 1601-1606.	17.5	283
189	Convergent evolution of gene networks by singleâ€gene duplications in higher eukaryotes. EMBO Reports, 2004, 5, 274-279.	4.5	83
190	Effects of reciprocal chromosomal translocations on the fitness of Saccharomyces cerevisiae. EMBO Reports, 2004, 5, 392-398.	4.5	45
191	Functional genomic hypothesis generation and experimentation by a robot scientist. Nature, 2004, 427, 247-252.	27.8	481
192	Combining transcriptome data with genomic and cDNA sequence alignments to make confident functional assignments for Aspergillus nidulans genes. Mycological Research, 2004, 108, 853-857.	2.5	25
193	PEDRo: A database for storing, searching and disseminating experimental proteomics data. BMC Genomics, 2004, 5, 68.	2.8	58
194	Clutamic protease distribution is limited to filamentous fungi. FEMS Microbiology Letters, 2004, 239, 95-101.	1.8	42
195	Proteomic response to amino acid starvation inCandida albicans andSaccharomyces cerevisiae. Proteomics, 2004, 4, 2425-2436.	2.2	95
196	Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era. BioEssays, 2004, 26, 99-105.	2.5	451
197	A critical and Integrated View of the Yeast Interactome. Comparative and Functional Genomics, 2004, 5, 382-402.	2.0	17
198	Genome-Wide Analysis of the Effects of Heat Shock on aSaccharomyces cerevisiaeMutant With a Constitutively Activated cAMP-Dependent Pathway. Comparative and Functional Genomics, 2004, 5, 419-431.	2.0	26

#	Article	IF	CITATIONS
199	Discrimination of Modes of Action of Antifungal Substances by Use of Metabolic Footprinting. Applied and Environmental Microbiology, 2004, 70, 6157-6165.	3.1	73
200	Use of expressed sequence tag analysis and cDNA microarrays of the filamentous fungus Aspergillus nidulans. Fungal Genetics and Biology, 2004, 41, 199-212.	2.1	46
201	Yeast as a Touchstone in Post-genomic Research: Strategies for Integrative Analysis in Functional Genomics. BMB Reports, 2004, 37, 93-106.	2.4	52
202	Overexpression of a serine alkaline protease gene in Bacillus licheniformis and its impact on the metabolic reaction network. Enzyme and Microbial Technology, 2003, 32, 706-720.	3.2	15
203	Optimal substrate feeding policy for fed-batch cultures of S. cerevisiae expressing bifunctional fusion protein displaying amylolytic activities. Enzyme and Microbial Technology, 2003, 33, 262-269.	3.2	12
204	An optimized protocol for metabolome analysis in yeast using direct infusion electrospray mass spectrometry. Phytochemistry, 2003, 62, 929-937.	2.9	207
205	An improvedtetO promoter replacement system for regulating the expression of yeast genes. Yeast, 2003, 20, 1255-1262.	1.7	38
206	GIMS: an integrated data storage and analysis environment for genomic and functional data. Yeast, 2003, 20, 1291-1306.	1.7	39
207	Engineering evolution to study speciation in yeasts. Nature, 2003, 422, 68-72.	27.8	232
208	A systematic approach to modeling, capturing, and disseminating proteomics experimental data. Nature Biotechnology, 2003, 21, 247-254.	17.5	246
209	High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nature Biotechnology, 2003, 21, 692-696.	17.5	500
210	Using yeast to place human genes in functional categories. Gene, 2003, 303, 121-129.	2.2	48
211	Functional Genomics. Molecular Cell, 2003, 12, 1343-1344.	9.7	5
212	A model-based analysis of microarray experimental error and normalisation. Nucleic Acids Research, 2003, 31, 96e-96.	14.5	35
213	SiteSeer: visualisation and analysis of transcription factor binding sites in nucleotide sequences. Nucleic Acids Research, 2003, 31, 3572-3575.	14.5	16
214	Transcriptome profiling of aSaccharomyces cerevisiaemutant with a constitutively activated Ras/cAMP pathway. Physiological Genomics, 2003, 16, 107-118.	2.3	46
215	Mcm1p-Induced DNA Bending Regulates the Formation of Ternary Transcription Factor Complexes. Molecular and Cellular Biology, 2003, 23, 450-461.	2.3	32
216	Dynamics of Protein Turnover, a Missing Dimension in Proteomics. Molecular and Cellular Proteomics, 2002, 1, 579-591.	3.8	369

#	Article	IF	CITATIONS
217	Functional genomics: lessons from yeast. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 17-23.	4.0	104
218	Hybridization array technology coupled with chemostat culture: Tools to interrogate gene expression in Saccharomyces cerevisiae. Methods, 2002, 26, 281-290.	3.8	79
219	Stable isotope labelling in vivo as an aid to protein identification in peptide mass fingerprinting. Proteomics, 2002, 2, 157-163.	2.2	58
220	Tools for the study of genome rearrangements in laboratory and industrial yeast strains. Yeast, 2002, 19, 441-448.	1.7	4
221	Improvement of ethanol production from starch by recombinant yeast through manipulation of environmental factors. Enzyme and Microbial Technology, 2002, 31, 640-647.	3.2	36
222	Comparative assessment of large-scale data sets of protein–protein interactions. Nature, 2002, 417, 399-403.	27.8	2,137
223	'To-day, we have naming of parts'. Nature Biotechnology, 2002, 20, 27-28.	17.5	4
224	A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nature Biotechnology, 2001, 19, 45-50.	17.5	948
225	Towards a truly integrative biology through the functional genomics of yeast. Current Opinion in Biotechnology, 2001, 12, 87-91.	6.6	75
226	The exploitation of selective cleavage of singly protonated peptide ions adjacent to aspartic acid residues using a quadrupole orthogonal time-of-flight mass spectrometer equipped with a matrix-assisted laser desorption/ionization source. International Journal of Mass Spectrometry, 2001, 210-211, 665-676.	1.5	29
227	A new family of yeast vectors and S288C-derived strains for the systematic analysis of gene function. Yeast, 2001, 18, 563-575.	1.7	10
228	Sequence Search Algorithms for Single Pass Sequence Identification: Does One Size Fit All?. Comparative and Functional Genomics, 2001, 2, 4-9.	2.0	5
229	Functional Analysis of six novel ORFs on the left arm of Chromosome XII ofSaccharomyces cerevisiae reveals three of them responding to S-starvation. Yeast, 2001, 18, 325-334.	1.7	13
230	A combination of chemical derivatisation and improved bioinformatic tools optimises protein identification for proteomics. Electrophoresis, 2001, 22, 552-559.	2.4	61
231	Chromatographic separations as a prelude to two-dimensional electrophoresis in proteomics analysis. Proteomics, 2001, 1, 42-53.	2.2	70
232	Bioinformatic assessment of mass spectrometric chemical derivatisation techniques for proteome database searching. Proteomics, 2001, 1, 1368-1377.	2.2	25
233	Transcript analysis of 1003 novel yeast genes using high-throughput northern hybridizations. EMBO Journal, 2001, 20, 3177-3186.	7.8	45
234	pH oscillations and constant low pH delay the appearance of highly branched (colonial) mutants in		16

chemostat cultures of the quorn® myco-protein fungus, Fusarium graminearum A3/5. , 2000, 51, 61-68.

#	Article	IF	CITATIONS
235	Functional analysis of six novel ORFs on the left arm of Chromosome XII inSaccharomyces cerevisiae reveals two essential genes, one of which is under cell-cycle control. Yeast, 2000, 16, 277-288.	1.7	8
236	Functional analysis of eight open reading frames on chromosomes XII and XIV ofSaccharomyces cerevisiae. Yeast, 2000, 16, 1457-1468.	1.7	8
237	Improved matrix-assisted laser desorption/ionization mass spectrometric analysis of tryptic hydrolysates of proteins following guanidination of lysine-containing peptides. Rapid Communications in Mass Spectrometry, 2000, 14, 2070-2073.	1.5	169
238	Glycosylation deficiency phenotypes resulting from depletion of GDP-mannose pyrophosphorylase in two yeast species. Molecular Microbiology, 2000, 36, 1156-1166.	2.5	57
239	Guilt-by-association goes global. Nature, 2000, 403, 601-602.	27.8	544
240	Conceptual modelling of genomic information. Bioinformatics, 2000, 16, 548-557.	4.1	96
241	Suppression of sorbitol dependence in a strain bearing a mutation in the SRB1/PSA1/VIG9 gene encoding GDP-mannose pyrophosphorylase by PDE2 overexpression suggests a role for the Ras/cAMP signal-transduction pathway in the control of yeast cell-wall biogenesis. Microbiology (United) Tj ETQq1 1 0.7843	81 4 igBT /	Overlock 10
242	Exploring redundancy in the yeast genome: an improved strategy for use of the cre–loxP system. Gene, 2000, 252, 127-135.	2.2	120
243	Down-regulation of the expression of PKC1 and SRB1/PSA1/VIG9, two genes involved in cell wall integrity in Saccharomyces cerevisiae, causes flocculation. Microbiology (United Kingdom), 1999, 145, 309-316.	1.8	16
244	Selection of Microbial Mutants Tolerant To Extreme Environmental Stress Using Continuous Culture-Control Design. Biotechnology Progress, 1999, 15, 1115-1124.	2.6	6
245	Redundancy reveals drugs in action. Nature Genetics, 1999, 21, 245-246.	21.4	10
246	Genetically controlled cell lysis in the yeastSaccharomyces cerevisiae. , 1999, 64, 607-615.		19
247	Analysis of a continuous-culture technique for the selection of mutants tolerant to extreme environmental stress. , 1999, 65, 397-406.		17
248	Transcript analysis of 250 novel yeast genes from chromosome XIV. , 1999, 15, 329-350.		33
249	Disruption of seven hypothetical aryl alcohol dehydrogenase genes fromSaccharomyces cerevisiae and construction of a multiple knock-out strain. Yeast, 1999, 15, 1681-1689.	1.7	60
250	Analysis of the Seven-Member AAD Gene Set Demonstrates That Genetic Redundancy in Yeast May Be More Apparent Than Real. Genetics, 1999, 153, 1591-1600.	2.9	62
251	Systematic functional analysis of the yeast genome. Trends in Biotechnology, 1998, 16, 373-378.	9.3	1,059
252	Quantitative analysis of yeast gene function using competition experiments in continuous culture. , 1998, 14, 1417-1427.		49

#	Article	IF	CITATIONS
253	Ethanol production using nuclear petite yeast mutants. Applied Microbiology and Biotechnology, 1998, 49, 511-516.	3.6	47
254	Ethanol production and fermentation characteristics of recombinant saccharomyces cerevisiae strains grown on starch. Enzyme and Microbial Technology, 1998, 22, 672-677.	3.2	60
255	1 Introduction to Functional Analysis of the Yeast Genome. Methods in Microbiology, 1998, 26, 1-13.	0.8	12
256	17 Metabolic Control Analysis as a Tool in the Elucidation of the Function of Novel Genes. Methods in Microbiology, 1998, , 297-336.	0.8	31
257	Characterization of RecombinantSaccharomycescerevisiaeManganese-Containing Superoxide Dismutase and Its H30A and K170R Mutants Expressed inEscherichia coliâ€. Biochemistry, 1998, 37, 11323-11331.	2.5	12
258	Environmental signals triggering methylenomycin production by Streptomyces coelicolor A3(2). Journal of Bacteriology, 1997, 179, 5511-5515.	2.2	33
259	From gene to screen with yeast. Current Opinion in Genetics and Development, 1997, 7, 405-409.	3.3	39
260	Enhancement of Ty transposition at the ADH4 and ADH2 loci in meiotic yeast cells. Molecular Genetics and Genomics, 1997, 254, 555-561.	2.4	23
261	Suitability of replacement markers for functional analysis studies inSaccharomyces cerevisiae. Yeast, 1997, 13, 1563-1573.	1.7	125
262	Yeast as a navigational aid in genome analysis. Microbiology (United Kingdom), 1997, 143, 1483-1487.	1.8	45
263	From DNA sequence to biological function: The new †Voyage of the Beagle'. Biochemical Society Transactions, 1996, 24, 291-292.	3.4	5
264	A network approach to the systematic analysis of yeast gene function. Trends in Genetics, 1996, 12, 241-242.	6.7	134
265	Improvement of antibiotic titers fromStreptomyces bacteria by interactive continuous selection. Biotechnology and Bioengineering, 1996, 49, 185-196.	3.3	45
266	From DNA sequence to biological function. Nature, 1996, 379, 597-600.	27.8	308
267	Evolution of Fusarium graminearum A3/5 grown in a series of glucose-limited chemostat cultures at a high dilution rate. Mycological Research, 1995, 99, 173-178.	2.5	14
268	The maintenance of self-replicating plasmids inSaccharomyces cerevisiae: Mathematical modelling, computer simulations and experimental tests. Yeast, 1995, 11, 641-658.	1.7	8
269	VII. Yeast sequencing reports. DNA sequence analysis of a 35 kb segment fromSaccharomyces cerevisiae chromosome VII reveals 19 open reading frames includingRAD54, ACE1/CUP2, PMR1, RCK1, AMS1 andCAL1/CDC43. Yeast, 1995, 11, 1413-1419.	1.7	18
270	Size is important, but…. Nature Genetics, 1995, 10, 253-254.	21.4	16

#	Article	IF	CITATIONS
271	Development of yeast strains for the efficient utilisation of starch: evaluation of constructs that express α-amylase and glucoamylase separately or as bifunctional fusion proteins. Applied Microbiology and Biotechnology, 1995, 43, 1067-1076.	3.6	90
272	Introduction of YACs into intact yeast cells by a procedure which shows low levels of recombinagenicity and co-transformation. Nucleic Acids Research, 1994, 22, 5011-5015.	14.5	14
273	A physical comparison of chromosome III in six strains ofSaccharomyces cerevisiae. Yeast, 1994, 10, 39-57.	1.7	59
274	XI. Yeast sequencing reports. Sequence analysis of a 10 kb fragment of yeast chromosome XI identifies the SMY1 locus and reveals sequences related to a pre-mRNA splicing factor and vacuolar ATPase subunit C plus a number of unidentified open reading frames. Yeast, 1994, 10, 247-255.	1.7	3
275	XI. Yeast sequencing reports. Sequence analysis of a 3·5 kbEcoRI fragment from the left arm ofSaccharomyces cerevisiae chromosome XI reveals the location of theMBR1 gene and a sequence related to a GTPase-activating protein. Yeast, 1994, 10, 257-264.	1.7	3
276	Cell physiology and antibiotic production of Streptomyces coelicolor grown on solid medium. Biotechnology Letters, 1994, 16, 1015-1020.	2.2	8
277	Back to bases in biology. Nature, 1994, 368, 14-15.	27.8	10
278	Treatment of yeast cells with wall lytic enzymes is not required to prepare chromosomes for pulsed-field gel analysis. Yeast, 1993, 9, 1053-1055.	1.7	25
279	Characterization of morphological mutants generated spontaneously in glucose-limited, continuous flow cultures of Fusarium graminearum A3/5. Mycological Research, 1992, 96, 555-562.	2.5	25
280	Studies on plasmid stability, cell metabolism and superoxide dismutase production by Pgk? strains of Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 1992, 37, 615-20.	3.6	8
281	Complementation of the Saccharomyces cerevisiae srb1-1 mutation: an autoselection system for stable plasmid maintenance. Current Genetics, 1992, 21, 339-344.	1.7	20
282	The complete DNA sequence of yeast chromosome III. Nature, 1992, 357, 38-46.	27.8	924
283	Current awareness—recent symposia and seminars. Luminescence, 1992, 7, 215-222.	0.0	0
284	Nutrient-dependent selection of morphological mutants ofFusarium graminearum A3/5 isolated from long-term continuous flow cultures. Biotechnology and Bioengineering, 1992, 40, 1181-1189.	3.3	24
285	"Classical―Yeast Biotechnology. , 1991, , 213-248.		7
286	Appearance of morphological (colonial) mutants in glucose-limited, continuous flow cultures of Fusarium graminearum A3/5. Mycological Research, 1991, 95, 1284-1288.	2.5	27
287	Heritable Damage to Yeast Caused by Transformation. Nature Biotechnology, 1991, 9, 179-182.	17.5	20
288	Dispersed growth of Streptomyces in liquid culture. Applied Microbiology and Biotechnology, 1989, 31, 272.	3.6	246

#	Article	IF	CITATIONS
289	Replication and recombination in gene establishment in non-Saccharomyces yeasts. Journal of Basic Microbiology, 1988, 28, 197-208.	3.3	2
290	A downstream activator sequence regulates the expression of the yeast transposon. Current Genetics, 1988, 13, 357-362.	1.7	5
291	Functional expression of the yeast Mn-superoxide dismutase gene in Escherichia coli requires deletion of the signal peptide sequence. Gene, 1988, 73, 121-130.	2.2	11
292	Molecular and Genetic Approaches to Alcohol Biotechnology in Brazil. Critical Reviews in Biotechnology, 1987, 6, 323-355.	9.0	8
293	Polymorphisms on the right arm of yeast chromosome III associated with Ty transposition and recombination events. Nucleic Acids Research, 1987, 15, 8963-8982.	14.5	44
294	A microculture hybridization technique for the detection of specific DNA sequences in filamentous fungi. Experimental Mycology, 1987, 11, 70-73.	1.6	6
295	Phenotypic differences between induced and spontaneous 2?-plasmid-free segregants of Saccharomyces cerevisiae. Current Genetics, 1987, 11, 415-418.	1.7	9
296	Cloning and characterisation of the ribosomal RNA genes of the dimorphic yeast, Yarrowia lipolytica. Current Genetics, 1986, 10, 449-452.	1.7	31
297	The yeast 2 μ plasmid: strategies for the survival of a selfish DNA. Molecular Genetics and Genomics, 1986, 205, 417-421.	2.4	93
298	Physical separation and functional interaction ofKluyveromyces lactis andSaccharomyces cerevisiae ARS elements derived from killer plasmid DNA. Yeast, 1986, 2, 179-191.	1.7	20
299	Enhanced stability of a 2?-based recombinant plasmid in diploid yeast. Biotechnology Letters, 1986, 8, 391-396.	2.2	14
300	A â€~hot-spot' for Ty transposition on the left arm of yeast chromosome III. Nucleic Acids Research, 1986, 14, 3475-3485.	14.5	59
301	DNA sequence analysis of ARS elements from chromosome III of Saccharomyces cerevisiae: identification of a new conserved sequence. Nucleic Acids Research, 1986, 14, 6247-6264.	14.5	92
302	An E. coli-yeast shuttle cosmid with positive selection for inserted fragments. Current Genetics, 1985, 10, 29-33.	1.7	2
303	Automation of DNA Sequencing: A System to Perform the Sanger Dideoxysequencing Reactions. Bio/technology, 1985, 3, 911-915.	1.5	31
304	Formation of intergeneric hybrids of yeast by protoplast fusion of Yarrowia and Kluyveromyces species. Current Genetics, 1984, 8, 49-55.	1.7	23
305	Ethanol production and tolerance in grande and petite yeasts. Journal of Chemical Technology and Biotechnology Biotechnology, 1984, 34, 116-120.	0.2	13
306	Purification and properties of a double-stranded ribonuclease from the yeastSaccharomyces cerevisiae. FEBS Journal, 1983, 137, 501-507.	0.2	14

#	Article	IF	CITATIONS
307	Reduced ethanol tolerance: One of the pleiotropic effects of the pep4.3 mutation in Saccharomyces cerevisiae. Biotechnology Letters, 1983, 5, 419-422.	2.2	9
308	Stability of a cloned gene in yeast grown in chemostat culture. Molecular Genetics and Genomics, 1983, 192, 361-365.	2.4	81
309	Isolation and characterisation of a double-stranded RNA virus-like particle from the yeast Yarrowia lipolytica. Current Genetics, 1983, 7, 185-190.	1.7	20
310	Isolation of ethanol-tolerant mutants of yeast by continuous selection. European Journal of Applied Microbiology and Biotechnology, 1982, 16, 119-122.	1.3	92
311	The effect of temperature on the ethanol tolerance of the yeast, Saccharomyces uvarum. Biotechnology Letters, 1982, 4, 269-273.	2.2	39
312	Ethanol inhibition of yeast growth and fermentation: Differences in the magnitude and complexity of the effect. European Journal of Applied Microbiology and Biotechnology, 1981, 11, 151-155.	1.3	132
313	The regulation of RNA synthesis in yeast IV. Molecular Genetics and Genomics, 1979, 171, 161-166.	2.4	23
314	An apparatus for the fluorescence scanning of ethidium bromide-stained gels. Analytical Biochemistry, 1977, 82, 271-277.	2.4	8