John W Lough

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8812758/publications.pdf Version: 2024-02-01

Іоны W Голсн

#	Article	IF	CITATIONS
1	Conditional depletion of the acetyltransferase Tip60 protects against the damaging effects of myocardial infarction. Journal of Molecular and Cellular Cardiology, 2022, 163, 9-19.	1.9	10
2	Measuring cardiomyocyte cell-cycle activity and proliferation in the age of heart regeneration. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H579-H596.	3.2	21
3	A Systematic Review of Ebstein's Anomaly with Left Ventricular Noncompaction. Journal of Cardiovascular Development and Disease, 2022, 9, 115.	1.6	4
4	Decreased Contraction Rate, Altered Calcium Transients, and Increased Proliferation seen in Patientâ€specific iPSC Ms Modeling Ebstein's Anomaly and Left Ventricular Noncompaction. FASEB Journal, 2022, 36, .	0.5	0
5	Significance of α-Myosin Heavy Chain (MYH6) Variants in Hypoplastic Left Heart Syndrome and Related Cardiovascular Diseases. Journal of Cardiovascular Development and Disease, 2022, 9, 144.	1.6	8
6	Evidence that the acetyltransferase Tip60 induces the DNA damage response and cell-cycle arrest in neonatal cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2021, 155, 88-98.	1.9	8
7	Myh6-driven Cre-recombinase activates the DNA damage response and the cell-cycle in the myocardium in the absence of loxP sites. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	13
8	Lysine acetyltransferase Tip60 is required for hematopoietic stem cell maintenance. Blood, 2020, 136, 1735-1747.	1.4	33
9	Contractility of Induced Pluripotent Stem Cell-Cardiomyocytes With an MYH6 Head Domain Variant Associated With Hypoplastic Left Heart Syndrome. Frontiers in Cell and Developmental Biology, 2020, 8, 440.	3.7	30
10	Evidence that Tip60 Induces the DDR & Cardiomyocyte Replicative Senescence in the Neonatal Heart. FASEB Journal, 2019, 33, 331.2.	0.5	0
11	A Novel MYH6 E1503V Variant in a Family with a History of Heart Disease, including Hypoplastic Left Heart Syndrome. FASEB Journal, 2019, 33, 831.3.	0.5	0
12	CRISPR/Cas9â€mediated Genome Editing in Patientâ€Derived iPSCâ€Cardiomyocytes Recapitulates an MYH6 â€R443P Phenotype in a HLHS Family. FASEB Journal, 2019, 33, 701.15.	0.5	1
13	The Lysine Acetyltransferase Tip60 Is Required for Hematopoietic Stem Cell Maintenance. Blood, 2018, 132, 2554-2554.	1.4	0
14	Depletion of Tip60 from In Vivo Cardiomyocytes Increases Myocyte Density, Followed by Cardiac Dysfunction, Myocyte Fallout and Lethality. PLoS ONE, 2016, 11, e0164855.	2.5	18
15	Activin-A and Bmp4 Levels Modulate Cell Type Specification during CHIR-Induced Cardiomyogenesis. PLoS ONE, 2015, 10, e0118670.	2.5	29
16	Allele Compensation in Tip60+/â^' Mice Rescues White Adipose Tissue Function In Vivo. PLoS ONE, 2014, 9, e98343.	2.5	3
17	Dynamic Interactions between TIP60 and p300 Regulate FOXP3 Function through a Structural Switch Defined by a Single Lysine on TIP60. Cell Reports, 2014, 7, 1471-1480.	6.4	89
18	Stress-Induced Cell-Cycle Activation in Tip60 Haploinsufficient Adult Cardiomyocytes. PLoS ONE, 2012, 7, e31569.	2.5	18

John W Lough

#	Article	IF	CITATIONS
19	hESCâ€Derived Definitive Endoderm Induces Cardiomyogenesis in Human Embryonic Stem Cells FASEB Journal, 2010, 24, 175.2.	0.5	0
20	Making embryonic stem cells infarctâ€avid. FASEB Journal, 2008, 22, 33-33.	0.5	0
21	What's hot in anatomy: Hematopoietic progenitor cells and myocardial repair. The Anatomical Record, 2003, 274B, 147-147.	1.8	Ο
22	Characterization and expression of the mouse tat interactive protein 60 kD (TIP60) gene. Gene, 2002, 289, 169-176.	2.2	32
23	Transient expression of TIP60 protein during early chick heart development. Developmental Dynamics, 2002, 223, 419-425.	1.8	19
24	Endoderm and heart development. Developmental Dynamics, 2000, 217, 327-342.	1.8	212
25	Requirement for BMP and FGF signaling during cardiogenic induction in non-precardiac mesoderm is specific, transient, and cooperative. Developmental Dynamics, 2000, 218, 383-393.	1.8	146
26	FGF-2-induced imbalance in early embryonic heart cell proliferation: A potential cause of late cardiovascular anomalies. Teratology, 2000, 62, 189-194.	1.6	12
27	Differential expression ofcSmad1 andcSmad5 in the primitive streak during chick embryo gastrulation. The Anatomical Record, 2000, 260, 102-105.	1.8	2
28	Expression of retinol binding protein and transthyretin during early embryogenesis. Developmental Dynamics, 1998, 212, 413-422.	1.8	24
29	Teratogenic effects of implanting fibroblast growth factor-2-soaked beads in the cardiac region of the stage 24 chick embryo. , 1998, 57, 140-145.		4
30	Expression of alternatively spliced and canonical basic fibroblast growth factor mRNAs in the early embryo and developing heart. , 1996, 206, 139-145.		12
31	Insulin-like growth factor-II/mannose-6-phosphate receptor expression during early heart development. , 1996, 207, 195-203.		7
32	Evidence that fibroblast growth factors 1 and 4 participate in regulation of cardiogenesis. , 1996, 207, 429-438.		66
33	Developmental expression of fibroblast growth factor receptor-1 (cek-1; flg) during heart development. Developmental Dynamics, 1995, 202, 115-125.	1.8	52
34	Anterior endoderm is a specific effector of terminal cardiac myocyte differentiation of cells from the embryonic heart forming region. Developmental Dynamics, 1994, 200, 155-162.	1.8	131
35	Onset of expression and regional deposition of alpha-smooth and sarcomeric actin during avian heart development. Developmental Dynamics, 1992, 193, 116-124.	1.8	56
36	Arabinosylcytosine-induced accumulation of DNA nicks in myotube nuclei detected by in situ nick translation. Journal of Cellular Physiology, 1990, 144, 12-17.	4.1	12

#	Article	IF	CITATIONS
37	Histones synthesized at different stages of myogenesis are differentially degraded in myotube cells. Journal of Cellular Physiology, 1989, 141, 97-102.	4.1	11
38	Interferon-mediated inhibition of differentiation in a murine myoblast cell line. Journal of Cellular Physiology, 1986, 126, 211-215.	4.1	18