Zhenpeng Qin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8811477/publications.pdf

Version: 2024-02-01

394421 345221 2,153 45 19 36 citations g-index h-index papers 60 60 60 3181 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Spatiotemporal Evolution of Temperature During Transient Heating of Nanoparticle Arrays. Journal of Heat Transfer, 2022, 144 , .	2.1	4
2	Plasmonic LAMP: Improving the Detection Specificity and Sensitivity for SARS oVâ€2 by Plasmonic Sensing of Isothermally Amplified Nucleic Acids. Small, 2022, 18, e2107832.	10.0	19
3	Single pulse heating of a nanoparticle array for biological applications. Nanoscale Advances, 2022, 4, 2090-2097.	4.6	3
4	Digital plasmonic nanobubble detection for rapid and ultrasensitive virus diagnostics. Nature Communications, 2022, 13, 1687.	12.8	16
5	Brain Targeting, Antioxidant Polymeric Nanoparticles for Stroke Drug Delivery and Therapy. Small, 2022, 18, e2107126.	10.0	12
6	Plasmonic LAMP: Improving the Detection Specificity and Sensitivity for SARS oVâ€2 by Plasmonic Sensing of Isothermally Amplified Nucleic Acids (Small 12/2022). Small, 2022, 18, .	10.0	0
7	Toward dynamic, anisotropic, high-resolution, and functional measurement in the brain extracellular space. Neurophotonics, 2022, 9, 032210.	3.3	2
8	Probing Neuropeptide Volume Transmission In Vivo by Simultaneous Nearâ€Infrared Lightâ€Triggered Release and Optical Sensing**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
9	Ultrasensitive and Highly Specific Lateral Flow Assays for Point-of-Care Diagnosis. ACS Nano, 2021, 15, 3593-3611.	14.6	270
10	Nanotransducers for wireless neuromodulation. Matter, 2021, 4, 1484-1510.	10.0	20
10	Nanotransducers for wireless neuromodulation. Matter, 2021, 4, 1484-1510. Reversibly Modulating the Blood–Brain Barrier by Laser Stimulation of Molecular-Targeted Nanoparticles. Nano Letters, 2021, 21, 9805-9815.	10.0 9.1	20
	Reversibly Modulating the Blood–Brain Barrier by Laser Stimulation of Molecular-Targeted		
11	Reversibly Modulating the Blood–Brain Barrier by Laser Stimulation of Molecular-Targeted Nanoparticles. Nano Letters, 2021, 21, 9805-9815. Computational Investigation of Protein Photoinactivation by Molecular Hyperthermia. Journal of	9.1	49
11 12	Reversibly Modulating the Blood–Brain Barrier by Laser Stimulation of Molecular-Targeted Nanoparticles. Nano Letters, 2021, 21, 9805-9815. Computational Investigation of Protein Photoinactivation by Molecular Hyperthermia. Journal of Biomechanical Engineering, 2021, 143, . Nanoparticle Fragmentation below the Melting Point under Single Picosecond Laser Pulse	9.1	49 7
11 12 13	Reversibly Modulating the Blood–Brain Barrier by Laser Stimulation of Molecular-Targeted Nanoparticles. Nano Letters, 2021, 21, 9805-9815. Computational Investigation of Protein Photoinactivation by Molecular Hyperthermia. Journal of Biomechanical Engineering, 2021, 143, . Nanoparticle Fragmentation below the Melting Point under Single Picosecond Laser Pulse Stimulation. Journal of Physical Chemistry C, 2021, 125, 26718-26730. Nearâ€Infrared Light Triggeredâ€Release in Deep Brain Regions Using Ultraâ€photosensitive Nanovesicles.	9.1 1.3 3.1	4977
11 12 13	Reversibly Modulating the Blood–Brain Barrier by Laser Stimulation of Molecular-Targeted Nanoparticles. Nano Letters, 2021, 21, 9805-9815. Computational Investigation of Protein Photoinactivation by Molecular Hyperthermia. Journal of Biomechanical Engineering, 2021, 143, . Nanoparticle Fragmentation below the Melting Point under Single Picosecond Laser Pulse Stimulation. Journal of Physical Chemistry C, 2021, 125, 26718-26730. Nearâ€Infrared Light Triggeredâ€Release in Deep Brain Regions Using Ultraâ€photosensitive Nanovesicles. Angewandte Chemie, 2020, 132, 8686-8693.	9.1 1.3 3.1 2.0	4976
11 12 13 14	Reversibly Modulating the Blood–Brain Barrier by Laser Stimulation of Molecular-Targeted Nanoparticles. Nano Letters, 2021, 21, 9805-9815. Computational Investigation of Protein Photoinactivation by Molecular Hyperthermia. Journal of Biomechanical Engineering, 2021, 143, . Nanoparticle Fragmentation below the Melting Point under Single Picosecond Laser Pulse Stimulation. Journal of Physical Chemistry C, 2021, 125, 26718-26730. Nearâ€Infrared Light Triggeredâ€Release in Deep Brain Regions Using Ultraâ€photosensitive Nanovesicles. Angewandte Chemie, 2020, 132, 8686-8693. Nearâ€Infrared Light Triggeredâ€Release in Deep Brain Regions Using Ultraâ€photosensitive Nanovesicles. Angewandte Chemie - International Edition, 2020, 59, 8608-8615. Signal amplification and quantification on lateral flow assays by laser excitation of plasmonic	9.1 1.3 3.1 2.0	497636

#	Article	IF	Citations
19	Rock the nucleus: significantly enhanced nuclear membrane permeability and gene transfection by plasmonic nanobubble induced nanomechanical transduction. Chemical Communications, 2018, 54, 2479-2482.	4.1	19
20	Site-Selective Nucleation and Size Control of Gold Nanoparticle Photothermal Antennae on the Pore Structures of a Virus. Journal of the American Chemical Society, 2018, 140, 17226-17233.	13.7	30
21	Ultrafast Pulsed Laser Induced Nanocrystal Transformation in Colloidal Plasmonic Vesicles. Advanced Optical Materials, 2018, 6, 1800726.	7.3	10
22	Ultrafast Nearâ€Infrared Lightâ€Triggered Intracellular Uncaging to Probe Cell Signaling. Advanced Functional Materials, 2017, 27, 1605778.	14.9	31
23	Tuning the Gold Nanoparticle Colorimetric Assay by Nanoparticle Size, Concentration, and Size Combinations for Oligonucleotide Detection. ACS Sensors, 2017, 2, 1627-1636.	7.8	23
24	Thermoplasmonics: Molecular Hyperthermia: Spatiotemporal Protein Unfolding and Inactivation by Nanosecond Plasmonic Heating (Small 36/2017). Small, 2017, 13, .	10.0	0
25	Understanding the Collective Optical Properties of Complex Plasmonic Vesicles. Advanced Optical Materials, 2017, 5, 1700403.	7.3	16
26	Molecular Hyperthermia: Spatiotemporal Protein Unfolding and Inactivation by Nanosecond Plasmonic Heating. Small, 2017, 13, 1700841.	10.0	34
27	Gold Nanorod Induced Warming of Embryos from the Cryogenic State Enhances Viability. ACS Nano, 2017, 11, 7869-7878.	14.6	106
28	Thermal Contrast Amplification Reader Yielding 8-Fold Analytical Improvement for Disease Detection with Lateral Flow Assays. Analytical Chemistry, 2016, 88, 11774-11782.	6.5	81
29	Quantitative Comparison of Photothermal Heat Generation between Gold Nanospheres and Nanorods. Scientific Reports, 2016, 6, 29836.	3.3	114
30	Correlated Parameter Fit of Arrhenius Model for Thermal Denaturation of Proteins and Cells. Annals of Biomedical Engineering, 2014, 42, 2392-2404.	2.5	52
31	Multisite Validation of Cryptococcal Antigen Lateral Flow Assay and Quantification by Laser Thermal Contrast. Emerging Infectious Diseases, 2014, 20, 45-53.	4.3	253
32	Membrane-Targeting Approaches for Enhanced Cancer Cell Destruction with Irreversible Electroporation. Annals of Biomedical Engineering, 2014, 42, 193-204.	2.5	27
33	Irreversible Electroporation: An In Vivo Study with Dorsal Skin Fold Chamber. Annals of Biomedical Engineering, 2013, 41, 619-629.	2.5	41
34	An In Vitro Study on Adjuvant Enhanced Irreversible Electroporation. , 2012, , .		3
35	Thermal Analysis Measurement of Gold Nanoparticle Interactions With Cell and Biomaterial. , 2012, , .		0
36	Thermophysical and biological responses of gold nanoparticle laser heating. Chemical Society Reviews, 2012, 41, 1191-1217.	38.1	486

ZHENPENG QIN

#	Article	IF	CITATIONS
37	Non-Thermal Destruction of Prostate Cancer by Irreversible Electroporation. Journal of Medical Devices, Transactions of the ASME, 2012, 6, .	0.7	0
38	Significantly Improved Analytical Sensitivity of Lateral Flow Immunoassays by Using Thermal Contrast. Angewandte Chemie - International Edition, 2012, 51, 4358-4361.	13.8	155
39	Nanoparticle heating: nanoscale to bulk effects of electromagnetically heated iron oxide and gold for biomedical applications. , 2011, , .		1
40	Effects of particle's off-axis position, shape, orientation and entry position on resistance changes of micro Coulter counting devices. Measurement Science and Technology, 2011, 22, 045804.	2.6	79
41	Irreversible Electroporation: An In Vivo Study Within the Dorsal Skin Fold Chamber., 2011, , .		0
42	One Dimensional Experimental Setup to Study the Heating of Nanoparticle Laden Systems. , 2010, , .		4
43	Flow of Electrolyte With a Surface-Charged Particle in a Nano-Channel: Quasi-Steady Modeling. , 2009, , .		0
44	Probing Neuropeptide Volume Transmission In Vivo by Simultaneous Nearâ€Infrared Light Triggered Release and Optical Sensing. Angewandte Chemie, 0, , .	2.0	1
45	Curvature and temperature-dependent thermal interface conductance between nanoscale-gold and water. Journal of Chemical Physics, 0, , .	3.0	4