Paul L Burn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8811026/publications.pdf

Version: 2024-02-01

432 papers 33,871 citations

72 h-index 173 g-index

443 all docs 443 docs citations

443 times ranked

21589 citing authors

#	Article	IF	CITATIONS
1	Dielectric Constant Engineering of Organic Semiconductors: Effect of Planarity and Conjugation Length. Advanced Functional Materials, 2022, 32, 2104259.	7.8	10
2	Light-emitting dendrimer: exciplex host-based solution-processed white organic light-emitting diodes. Organic Electronics, 2022, 100, 106389.	1.4	8
3	Rivers of Lightâ€"Ternary Exciplex Blends for High Efficiency Solutionâ€Processed Red Phosphorescent Organic Light Emitting Diodes. Advanced Functional Materials, 2022, 32, 2108128.	7.8	3
4	Investigating the donor:acceptor ratio in thermally activated delayed fluorescence light-emitting macromolecules. Organic Electronics, 2022, 105, 106500.	1.4	6
5	Thermally activated delayed fluorescence poly(dendrimer)s – detrapping excitons for reverse intersystem crossing. Journal of Materials Chemistry C, 2022, 10, 8109-8124.	2.7	1
6	Understanding the performance differences between solution and vacuum deposited OLEDs: A computational approach. Journal of Chemical Physics, 2022, 156, .	1.2	8
7	Power losses in conventional and inverted non-polymeric donor:fullerene bulk heterojunction solar cells - The role of vertical phase separation in BQR:PC71BM blends. Organic Electronics, 2022, 108, 106594.	1.4	O
8	Extremely efficient flexible organic solar cells with a graphene transparent anode: Dependence on number of layers and doping of graphene. Carbon, 2021, 171, 350-358.	5.4	33
9	Preserving the work function of Ultra-Violet-ozone treated indium tin oxide by triarylamine-based small molecule modification for solution-processed organic light-emitting diodes with increased external quantum efficiency. Thin Solid Films, 2021, 718, 138475.	0.8	6
10	Floquet spin states in OLEDs. Nature Communications, 2021, 12, 465.	5.8	13
11	Engineering fluorinated-cation containing inverted perovskite solar cells with an efficiency of >21% and improved stability towards humidity. Nature Communications, 2021, 12, 52.	5.8	94
12	Acid is a potential interferent in fluorescent sensing of chemical warfare agent vapors. Communications Chemistry, 2021, 4, .	2.0	11
13	Unraveling exciton processes in Ir(ppy)3:CBP OLED films upon photoexcitation. Journal of Chemical Physics, 2021, 154, 164101.	1.2	9
14	Diffusion in Organic Film Stacks Containing Solution-Processed Phosphorescent Poly(dendrimer) Dopants. ACS Applied Materials & Samp; Interfaces, 2021, 13, 30910-30920.	4.0	2
15	Measuring the Magnetic Field Amplitude of rf Radiation by the Quasistatic Magnetic Field Effect in Organic Light-Emitting Diodes. Physical Review Applied, 2021, 15, .	1.5	7
16	Balanced Hole and Electron Transport in Ir(ppy) ₃ :TCTA Blends. ACS Photonics, 2021, 8, 2425-2430.	3.2	12
17	Effect of Host Generation on the Luminescent and Charge Transporting Properties of Solution Processed OLEDs. Advanced Materials Interfaces, 2021, 8, 2100820.	1.9	6
18	Effect of dendrimer surface groups on the properties of phosphorescent emissive films. Organic Electronics, 2021, 99, 106321.	1.4	4

#	Article	IF	CITATIONS
19	A solution-processed bis-tridentate iridium(<scp>iii</scp>) complex-cored dendrimer for green OLEDs. Journal of Materials Chemistry C, 2021, 9, 9545-9554.	2.7	10
20	Emissive Material Optimization for Solution-Processed Exciplex OLEDs. ACS Applied Electronic Materials, 2021, 3, 4757-4767.	2.0	3
21	Effect of dendron structure on the luminescent and charge transporting properties of solution processed dendrimer-based OLEDs. Journal of Materials Chemistry C, 2021, 9, 16033-16043.	2.7	4
22	Hole-transporting materials for low donor content organic solar cells: Charge transport and device performance. Organic Electronics, 2020, 76, 105480.	1.4	6
23	Challenges in Fluorescence Detection of Chemical Warfare Agent Vapors Using Solidâ€State Films. Advanced Materials, 2020, 32, e1905785.	11.1	64
24	A red emissive poly(dendrimer) for solution processed organic light-emitting diodes. Organic Electronics, 2020, 78, 105594.	1.4	8
25	Revealing the Interplay between Charge Transport, Luminescence Efficiency, and Morphology in Organic Lightâ€Emitting Diode Blends. Advanced Functional Materials, 2020, 30, 1907942.	7.8	28
26	Precursor Route Poly(1,4-phenylenevinylene)-Based Interlayers for Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 889-899.	2.5	11
27	Defect/Interface Recombination Limited Quasi-Fermi Level Splitting and Open-Circuit Voltage in Monoand Triple-Cation Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2020, 12, 37647-37656.	4.0	28
28	A three-dimensional multi-chromophore naphthalene diimide acceptor for polymer bulk heterojunction solar cells. Synthetic Metals, 2020, 268, 116505.	2.1	2
29	Solution-Processed Dendrimer-Based TADF Materials for Deep-Red OLEDs. Macromolecules, 2020, 53, 10375-10385.	2.2	25
30	Pyrrolo[3,2-b]pyrrole-1,4-dione (IsoDPP) End Capped with Napthalimide or Phthalimide: Novel Small Molecular Acceptors for Organic Solar Cells. Molecules, 2020, 25, 4700.	1.7	5
31	White Dendrimer Organic Light Emitting Diodes: Exciton Formation and Transfer. Advanced Optical Materials, 2020, 8, 2001289.	3.6	11
32	Dicyanovinyl-based fluorescent sensors for dual mechanism amine sensing. Journal of Materials Chemistry C, 2020, 8, 13723-13732.	2.7	33
33	Luminescent poly(dendrimer)s for the detection of explosives. Materials Advances, 2020, 1, 837-844.	2.6	8
34	Evolution and Morphology of Thin Films Formed by Solvent Evaporation: An Organic Semiconductor Case Study. ACS Applied Materials & Samp; Interfaces, 2020, 12, 40548-40557.	4.0	17
35	Determining the Correlation between Excited State Dynamics and Donor and Acceptor Structure in Nonfullerene Acceptors. Journal of Physical Chemistry C, 2020, 124, 17851-17863.	1.5	1
36	Annealing-enhanced birefringence and aggregation in MEH-PPV: A spectroscopic ellipsometry study. Journal of Applied Physics, 2020, 127, .	1.1	5

#	Article	IF	CITATIONS
37	Perdeuterated Conjugated Polymers for Ultralowâ€Frequency Magnetic Resonance of OLEDs. Angewandte Chemie - International Edition, 2020, 59, 9388-9392.	7.2	12
38	Perdeuteration of poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene] (d-MEH-PPV): control of microscopic charge-carrier spin–spin coupling and of magnetic-field effects in optoelectronic devices. Journal of Materials Chemistry C, 2020, 8, 2764-2771.	2.7	13
39	High-Sensitivity Poly(dendrimer)-Based Sensors for the Detection of Explosives and Taggant Vapors. Macromolecules, 2020, 53, 1652-1664.	2.2	19
40	Hole-Transporting Poly(dendrimer)s as Electron Donors for Low Donor Organic Solar Cells with Efficient Charge Transport. Macromolecules, 2020, 53, 2902-2911.	2,2	5
41	Properties of PDMS-divinylbenzene based pre-concentrators for nitroaromatic vapors. Journal of Materials Chemistry C, 2020, 8, 16967-16973.	2.7	4
42	Effect of Surface Roughness on Light-Absorber Orientation in an Organic Photovoltaic Film. Chemistry of Materials, 2019, 31, 6918-6924.	3.2	3
43	Charge transport in an organic light emitting diode material measured using metal-insulator-semiconductor charge extraction by linearly increasing voltage with parameter variation. Journal of Applied Physics, 2019, 126, .	1.1	16
44	Flexible ITOâ€Free Organic Photovoltaics on Ultraâ€Thin Flexible Glass Substrates with High Efficiency and Improved Stability. Solar Rrl, 2019, 3, 1800286.	3.1	5
45	The Role of Bulk and Interface Recombination in Highâ€Efficiency Lowâ€Dimensional Perovskite Solar Cells. Advanced Materials, 2019, 31, e1901090.	11.1	59
46	A Double Support Layer for Facile Clean Transfer of Two-Dimensional Materials for High-Performance Electronic and Optoelectronic Devices. ACS Nano, 2019, 13, 5513-5522.	7.3	29
47	Calculating transition dipole moments of phosphorescent emitters for efficient organic light-emitting diodes. Physical Chemistry Chemical Physics, 2019, 21, 9740-9746.	1.3	7
48	Grapheneâ€Based Transparent Conducting Electrodes for High Efficiency Flexible Organic Photovoltaics: Elucidating the Source of the Power Losses. Solar Rrl, 2019, 3, 1900042.	3.1	13
49	Understanding charge transport in Ir(ppy)3:CBP OLED films. Journal of Chemical Physics, 2019, 150, 094110.	1.2	25
50	Sensitive and fast fluorescence-based indirect sensing of TATP. RSC Advances, 2019, 9, 7032-7042.	1.7	7
51	Organic light-emitting diodes comprising highly luminescent red-emitting dendrimers with carbazole-based dendrons. Journal of Materials Chemistry C, 2019, 7, 4681-4691.	2.7	14
52	9,9′-Bifluorenylidene-diketopyrrolopyrrole donors for non-polymeric solution processed solar cells. Synthetic Metals, 2019, 250, 79-87.	2.1	0
53	Elucidating the effects of guest-host energy level alignment on charge transport in phosphorescent OLEDs. Applied Physics Letters, 2019, 115, 263301.	1.5	11
54	Solid-State Fluorescence-based Sensing of TATP via Hydrogen Peroxide Detection. ACS Sensors, 2019, 4, 134-142.	4.0	33

#	Article	IF	Citations
55	Mixed Domains Enhance Charge Generation and Extraction in Bulkâ€Heterojunction Solar Cells with Smallâ€Molecule Donors. Advanced Energy Materials, 2018, 8, 1702941.	10.2	43
56	Investigating charge generation in polymer:non-fullerene acceptor bulk heterojunction films. Organic Electronics, 2018, 55, 177-186.	1.4	2
57	Morphology of OLED Film Stacks Containing Solution-Processed Phosphorescent Dendrimers. ACS Applied Materials & Samp; Interfaces, 2018, 10, 3848-3855.	4.0	7
58	Recombination Losses Above and Below the Transport Percolation Threshold in Bulk Heterojunction Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1703339.	10.2	16
59	Influence of Dopant Concentration and Steric Bulk on Interlayer Diffusion in OLEDs. Advanced Materials Interfaces, 2018, 5, 1700872.	1.9	7
60	An external quantum efficiency of >20% from solution-processed poly(dendrimer) organic light-emitting diodes. Npj Flexible Electronics, 2018, 2, .	5.1	29
61	Twisted dendrons for highly luminescent green emissive phosphorescent dendrimers. Journal of Materials Chemistry C, 2018, 6, 10315-10326.	2.7	13
62	Loss Mechanisms in Fullerene-Based Low-Donor Content Organic Solar Cells. Journal of Physical Chemistry C, 2018, 122, 20611-20618.	1.5	9
63	Effect of precursor macromonomer molecular weight on poly(dimethylsiloxane) film morphology and nitroaromatic vapor sorption. Sensors and Actuators B: Chemical, 2018, 270, 283-290.	4.0	2
64	Interface Engineering of Solution-Processed Hybrid Organohalide Perovskite Solar Cells. ACS Applied Materials & Solar Cell	4.0	89
65	Application of an A–A′–A-Containing Acceptor Polymer in Sequentially Deposited All-Polymer Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 24046-24054.	4.0	16
66	Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nature Energy, 2018, 3, 847-854.	19.8	721
67	Morphology of a Bulk Heterojunction Photovoltaic Cell with Low Donor Concentration. ACS Applied Materials & Samp; Interfaces, 2018, 10, 32413-32419.	4.0	24
68	A thiocarbonyl-containing small molecule for optoelectronics. RSC Advances, 2017, 7, 10316-10322.	1.7	10
69	Synthesis of grafted poly(p-phenyleneethynylene) via ARGET ATRP: Towards nonaggregating and photoluminescence materials. European Polymer Journal, 2017, 89, 263-271.	2.6	11
70	Elucidating the Spatial Arrangement of Emitter Molecules in Organic Lightâ€Emitting Diode Films. Angewandte Chemie - International Edition, 2017, 56, 8402-8406.	7.2	40
71	A Triarylamine-Based Anode Modifier for Efficient Organohalide Perovskite Solar Cells. ACS Applied Materials & Solar Cells	4.0	10
72	Elucidating the Spatial Arrangement of Emitter Molecules in Organic Lightâ€Emitting Diode Films. Angewandte Chemie, 2017, 129, 8522-8526.	1.6	1

#	Article	IF	CITATIONS
73	Dependence of Organic Interlayer Diffusion on Glass-Transition Temperature in OLEDs. ACS Applied Materials & Samp; Interfaces, 2017, 9, 14153-14161.	4.0	38
74	Effect of n-propyl substituents on the emission properties of blue phosphorescent iridium(iii) complexes. Journal of Chemical Physics, 2017, 146, 174305.	1.2	5
75	Considerations for Upscaling of Organohalide Perovskite Solar Cells. Advanced Optical Materials, 2017, 5, 1600819.	3.6	18
76	The structural impact of water sorption on device-quality melanin thin films. Soft Matter, 2017, 13, 3954-3965.	1.2	21
77	Engineering dielectric constants in organic semiconductors. Journal of Materials Chemistry C, 2017, 5, 3736-3747.	2.7	50
78	Host-Free Blue Phosphorescent Dendrimer Organic Light-Emitting Field-Effect Transistors and Equivalent Light-Emitting Diodes: A Comparative Study. ACS Photonics, 2017, 4, 754-760.	3.2	27
79	Relating Structure to Efficiency in Surfactant-Free Polymer/Fullerene Nanoparticle-Based Organic Solar Cells. ACS Applied Materials & Solar Cells.	4.0	21
80	How reliable are efficiency measurements of perovskite solar cells? The first inter-comparison, between two accredited and eight non-accredited laboratories. Journal of Materials Chemistry A, 2017, 5, 22542-22558.	5.2	70
81	Charge Generation in Non-Fullerene Donor–Acceptor Blends for Organic Solar Cells. Journal of Physical Chemistry C, 2017, 121, 18412-18422.	1.5	7
82	Real-time fluorescence quenching-based detection of nitro-containing explosive vapours: what are the key processes?. Physical Chemistry Chemical Physics, 2017, 19, 29714-29730.	1.3	49
83	The Molecular Origin of Anisotropic Emission in an Organic Light-Emitting Diode. Nano Letters, 2017, 17, 6464-6468.	4.5	33
84	Effect of capping group on the properties of non-polymeric diketopyrrolopyrroles for solution-processed bulk heterojunction solar cells. Organic Electronics, 2017, 50, 339-346.	1.4	3
85	Electric Field and Mobility Dependent Firstâ€Order Recombination Losses in Organic Solar Cells. Advanced Energy Materials, 2017, 7, 1601379.	10.2	31
86	Assessing the sensing limits of fluorescent dendrimer thin films for the detection of explosive vapors. Sensors and Actuators B: Chemical, 2017, 239, 727-733.	4.0	14
87	Efficient organic photovoltaic cells on a single layer graphene transparent conductive electrode using MoO _x as an interfacial layer. Nanoscale, 2017, 9, 251-257.	2.8	26
88	On the unipolarity of charge transport in methanofullerene diodes. Npj Flexible Electronics, 2017, 1, .	5.1	17
89	An Hydrophilic Anode Interlayer for Solution Processed Organohalide Perovskite Solar Cells. Advanced Materials Interfaces, 2016, 3, 1500420.	1.9	20
90	Diffusion at Interfaces in OLEDs Containing a Doped Phosphorescent Emissive Layer. Advanced Materials Interfaces, 2016, 3, 1600184.	1.9	17

#	Article	IF	Citations
91	Acceptor and Excitation Density Dependence of the Ultrafast Polaron Absorption Signal in Donor–Acceptor Organic Solar Cell Blends. Journal of Physical Chemistry Letters, 2016, 7, 2640-2646.	2.1	14
92	Thiophene dendrimer-based low donor content solar cells. Applied Physics Letters, 2016, 109, .	1.5	14
93	AZO/Ag/AZO anode for resonant cavity red, blue, and yellow organic light emitting diodes. Journal of Applied Physics, 2016, 119, 245501.	1.1	5
94	Bond Fission and Non-Radiative Decay in Iridium(III) Complexes. Inorganic Chemistry, 2016, 55, 5266-5273.	1.9	49
95	Detection of Explosive Vapors: The Roles of Exciton and Molecular Diffusion in Realâ€Time Sensing. ChemPhysChem, 2016, 17, 3350-3353.	1.0	16
96	Photophysics of detection of explosive vapours via luminescence quenching of thin films: impact of inter-molecular interactions. Physical Chemistry Chemical Physics, 2016, 18, 25861-25868.	1.3	7
97	Highly processable, rubbery poly(n-butyl acrylate) grafted poly(phenylene vinylene)s. European Polymer Journal, 2016, 84, 355-365.	2.6	14
98	Efficient, monolithic large area organohalide perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 13830-13836.	5.2	47
99	Orangeâ€Redâ€Lightâ€Emitting Fieldâ€Effect Transistors Based on Phosphorescent Pt(II) Complexes with Area Emission. Advanced Optical Materials, 2016, 4, 1867-1874.	3.6	15
100	Near infrared photodetectors based on subâ€gap absorption in organohalide perovskite single crystals. Laser and Photonics Reviews, 2016, 10, 1047-1053.	4.4	64
101	Electrochemically tuneable multi-colour electrochemiluminescence using a single emitter. Chemical Science, 2016, 7, 6974-6980.	3.7	29
102	Detection of Explosive Vapors: The Roles of Exciton and Molecular Diffusion in Real-Time Sensing. ChemPhysChem, 2016, 17, 3345-3345.	1.0	0
103	Slower carriers limit charge generation in organic semiconductor light-harvesting systems. Nature Communications, 2016, 7, 11944.	5. 8	65
104	Impact of Dimerization on Phase Separation and Crystallinity in Bulk Heterojunction Films Containing Non-Fullerene Acceptors. Macromolecules, 2016, 49, 4404-4415.	2.2	23
105	Charge Generation Pathways in Organic Solar Cells: Assessing the Contribution from the Electron Acceptor. Chemical Reviews, 2016, 116, 12920-12955.	23.0	197
106	Organic Photodiodes: The Future of Full Color Detection and Image Sensing. Advanced Materials, 2016, 28, 4766-4802.	11,1	599
107	Exact exchange and the density functional theory of metal-to-ligand charge-transfer in fac-lr(ppy)3. Organic Electronics, 2016, 33, 110-115.	1.4	11
108	The synthesis and ring-opening metathesis polymerization of glycomonomers. RSC Advances, 2016, 6, 31256-31264.	1.7	6

#	Article	IF	Citations
109	Organohalide Perovskites for Solar Energy Conversion. Accounts of Chemical Research, 2016, 49, 545-553.	7.6	135
110	Phosphorescence quenching of fac-tris(2-phenylpyridyl)iridium(<scp>iii</scp>) complexes in thin films on dielectric surfaces. Physical Chemistry Chemical Physics, 2016, 18, 3575-3580.	1.3	6
111	An overview of the Australian Centre for Advanced Photovoltaics and the Australia-US Institute for Advanced Photovoltaics. Materials Research Society Symposia Proceedings, 2015, 1771, 33-44.	0.1	1
112	Hybrid Areaâ€Emitting Transistors: Solution Processable and with High Aperture Ratios. Advanced Materials, 2015, 27, 6677-6682.	11.1	42
113	Bulk heterojunction thickness uniformity – a limiting factor in large area organic solar cells?. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2246-2254.	0.8	17
114	Pathway to high throughput, low cost indium-free transparent electrodes. Journal of Materials Chemistry A, 2015, 3, 13892-13899.	5.2	15
115	Diffusion of nitroaromatic vapours into fluorescent dendrimer films for explosives detection. Sensors and Actuators B: Chemical, 2015, 210, 550-557.	4.0	24
116	Efficient and bright polymer light emitting field effect transistors. Organic Electronics, 2015, 17, 371-376.	1.4	25
117	Low Noise, IRâ€Blind Organohalide Perovskite Photodiodes for Visible Light Detection and Imaging. Advanced Materials, 2015, 27, 2060-2064.	11.1	271
118	Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes. Nature Communications, 2015, 6, 6343.	5.8	406
119	Charge transport and recombination in heterostructure organic light emitting transistors. Organic Electronics, 2015, 25, 37-43.	1.4	8
120	Dielectric constant enhancement of non-fullerene acceptors via side-chain modification. Chemical Communications, 2015, 51, 14115-14118.	2.2	49
121	Defining the light emitting area for displays in the unipolar regime of highly efficient light emitting transistors. Scientific Reports, 2015, 5, 8818.	1.6	35
122	Photocarrier drift distance in organic solar cells and photodetectors. Scientific Reports, 2015, 5, 9949.	1.6	81
123	Planar silver nanowire, carbon nanotube and PEDOT:PSS nanocomposite transparent electrodes. Science and Technology of Advanced Materials, 2015, 16, 025002.	2.8	24
124	Room-temperature tilted-target sputtering deposition of highly transparent and low sheet resistance Al doped ZnO electrodes. Journal of Materials Chemistry C, 2015, 3, 5322-5331.	2.7	15
125	Simultaneous enhancement of charge generation quantum yield and carrier transport in organic solar cells. Journal of Materials Chemistry C, 2015, 3, 10799-10812.	2.7	25
126	Unambiguous detection of nitrated explosive vapours by fluorescence quenching of dendrimer films. Nature Communications, 2015, 6, 8240.	5.8	75

#	Article	IF	Citations
127	Hybrid light emitting transistors (Presentation Recording)., 2015,,.		0
128	Analysis of the emitting states of an Ir(III) complex with strong blue emission. Chemical Physics Letters, 2015, 641, 62-67.	1.2	6
129	Interplay of Zero-Field Splitting and Excited State Geometry Relaxation in <i>fac</i> -lr(ppy) ₃ . Inorganic Chemistry, 2015, 54, 10457-10461.	1.9	16
130	Solution-processed non-polymeric organic photodiodes. Proceedings of SPIE, 2015, , .	0.8	0
131	Molecular versus exciton diffusion in fluorescence-based explosive vapour sensors. Chemical Communications, 2015, 51, 17406-17409.	2.2	15
132	Conditions for charge transport without recombination in low mobility organic solar cells and photodiodes (Presentation Recording). , $2015, \ldots$		0
133	Quantitative real time sensing reveals enhanced sensitivity of polar dendrimer thin films for plastic explosive taggants. Journal of Materials Chemistry C, 2015, 3, 9412-9424.	2.7	2
134	Filterless narrowband visible photodetectors. Nature Photonics, 2015, 9, 687-694.	15.6	445
135	The spin-Dicke effect in OLED magnetoresistance. Nature Physics, 2015, 11, 910-914.	6.5	39
136	Clustering of High Molecular Weight PCDTBT in Bulk-Heterojunction Casting Solutions. Macromolecules, 2015, 48, 8331-8336.	2.2	15
137	Electro-Optics of Conventional and Inverted Thick Junction Organic Solar Cells. ACS Photonics, 2015, 2, 1745-1754.	3.2	40
138	Charge Transport without Recombination in Organic Solar Cells and Photodiodes. Journal of Physical Chemistry C, 2015, 119, 26866-26874.	1.5	28
139	Tuning the Optoelectronic Properties of Nonfullerene Electron Acceptors. ChemPhysChem, 2015, 16, 1295-1304.	1.0	12
140	Electro-optics of perovskite solar cells. Nature Photonics, 2015, 9, 106-112.	15.6	1,485
141	Optimized multilayer indium-free electrodes for organic photovoltaics. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 348-355.	0.8	8
142	Time-independent charge carrier mobility in a model polymer:fullerene organic solar cell. Organic Electronics, 2015, 16, 205-211.	1.4	11
143	Efficient, Large Area, and Thick Junction Polymer Solar Cells with Balanced Mobilities and Low Defect Densities. Advanced Energy Materials, 2015, 5, 1401221.	10.2	80
144	Highâ€Performance, Solutionâ€Processed Nonâ€polymeric Organic Photodiodes. Advanced Optical Materials, 2015, 3, 50-56.	3.6	43

#	Article	IF	Citations
145	Energetic requirements of iridium(<scp>iii</scp>) complex based photosensitisers in photocatalytic hydrogen generation. Physical Chemistry Chemical Physics, 2014, 16, 21577-21585.	1.3	17
146	The development of dendronized polymers containing phosphorescent iridium (III) complexes for solution-processable OLED Devices. , 2014, , .		0
147	High mobility solution-processed hybrid light emitting transistors. Applied Physics Letters, 2014, 105, 183302.	1.5	29
148	Balanced Carrier Mobilities: Not a Necessary Condition for Highâ€Efficiency Thin Organic Solar Cells as Determined by MISâ€CELIV. Advanced Energy Materials, 2014, 4, 1300954.	10.2	129
149	ITO-free top emitting organic light emitting diodes with enhanced light out-coupling. Laser and Photonics Reviews, 2014, 8, 165-171.	4.4	36
150	Molecular weight dependent bimolecular recombination in organic solar cells. Journal of Chemical Physics, 2014, 141, 054903.	1.2	21
151	Pentacene/K12 solar cells formed by organic vapor phase deposition. Journal of Photonics for Energy, 2014, 4, 043092.	0.8	0
152	Tuning the optoelectronic properties of cyanine and ketocyanine dyes by incorporation of 9,9-di-n-propylfluorenylindolenine. Dyes and Pigments, 2014, 101, 1-8.	2.0	13
153	Determination of Fullerene Scattering Length Density: A Critical Parameter for Understanding the Fullerene Distribution in Bulk Heterojunction Organic Photovoltaic Devices. Langmuir, 2014, 30, 1410-1415.	1.6	19
154	Solution-processed pentathiophene dendrimer based photodetectors for digital cameras. Sensors and Actuators B: Chemical, 2014, 196, 245-251.	4.0	16
155	Solution structure: defining polymer film morphology and optoelectronic device performance. Journal of Materials Chemistry C, 2014, 2, 71-77.	2.7	21
156	Dynamics of Charge Generation and Transport in Polymer-Fullerene Blends Elucidated Using a PhotoFET Architecture. ACS Photonics, 2014, 1, 114-120.	3.2	16
157	Carbohydrate globules: molecular asterisk-cored dendrimers for carbohydrate presentation. Polymer Chemistry, 2014, 5, 1173-1179.	1.9	8
158	Synthesis and properties of pyrrolo[3,2-b]pyrrole-1,4-diones (isoDPP) derivatives. Journal of Materials Chemistry C, 2014, 2, 4276.	2.7	13
159	Advantage of suppressed non-Langevin recombination in low mobility organic solar cells. Applied Physics Letters, 2014, 105, .	1.5	36
160	Spectral Dependence of the Internal Quantum Efficiency of Organic Solar Cells: Effect of Charge Generation Pathways. Journal of the American Chemical Society, 2014, 136, 11465-11472.	6.6	83
161	Time-Resolved Neutron Reflectometry and Photovoltaic Device Studies on Sequentially Deposited PCDTBT-Fullerene Layers. Langmuir, 2014, 30, 11474-11484.	1.6	35
162	Improved stability of non-ITO stacked electrodes for large area flexible organic solar cells. Solar Energy Materials and Solar Cells, 2014, 130, 182-190.	3.0	20

#	Article	IF	Citations
163	Thick junction broadband organic photodiodes. Laser and Photonics Reviews, 2014, 8, 924-932.	4.4	212
164	Worldwide outdoor round robin study of organic photovoltaic devices and modules. Solar Energy Materials and Solar Cells, 2014, 130, 281-290.	3.0	23
165	Room-temperature coupling between electrical current and nuclear spins in OLEDs. Science, 2014, 345, 1487-1490.	6.0	84
166	High-Mobility, Heterostructure Light-Emitting Transistors and Complementary Inverters. ACS Photonics, 2014, 1, 954-959.	3. 2	22
167	Narrow band green organic photodiodes for imaging. Organic Electronics, 2014, 15, 2903-2911.	1.4	118
168	Quantum Efficiency of Organic Solar Cells: Electro-Optical Cavity Considerations. ACS Photonics, 2014, 1, 173-181.	3.2	137
169	Free Carrier Generation in Organic Photovoltaic Bulk Heterojunctions of Conjugated Polymers with Molecular Acceptors: Planar versus Spherical Acceptors. ChemPhysChem, 2014, 15, 1539-1549.	1.0	27
170	All Solutionâ€Processed, Hybrid Light Emitting Fieldâ€Effect Transistors. Advanced Materials, 2014, 26, 6410-6415.	11.1	76
171	Impact of Acceptor Crystallinity on the Photophysics of Nonfullerene Blends for Organic Solar Cells. Journal of Physical Chemistry C, 2014, 118, 13460-13466.	1.5	11
172	The impact of hot charge carrier mobility on photocurrent losses in polymer-based solar cells. Scientific Reports, 2014, 4, 5695.	1.6	58
173	Measuring internal quantum efficiency to demonstrate hot exciton dissociation. Nature Materials, 2013, 12, 593-593.	13.3	37
174	Three-dimensional carbazole-based dendrimers: model structures for studying charge transport in organic semiconductor films. Polymer Chemistry, 2013, 4, 916-925.	1.9	22
175	Photophysics of Delocalized Excitons in Carbazole Dendrimers. Journal of Physical Chemistry A, 2013, 117, 6270-6278.	1.1	17
176	Detection of explosive analytes using a dendrimer-based field-effect transistor. Organic Electronics, 2013, 14, 1255-1261.	1.4	5
177	Colour selective organic photodetectors utilizing ketocyanine-cored dendrimers. Journal of Materials Chemistry C, 2013, 1, 3532.	2.7	69
178	Correlation of diffusion and performance in sequentially processed P3HT/PCBM heterojunction films by time-resolved neutron reflectometry. Journal of Materials Chemistry C, 2013, 1, 2593.	2.7	33
179	High-Generation Dendrimers with Excimer-like Photoluminescence for the Detection of Explosives. Journal of Physical Chemistry C, 2013, 117, 5328-5337.	1.5	38
180	The binding and fluorescence quenching efficiency of nitroaromatic (explosive) vapors in fluorescent carbazole dendrimer thin films. Physical Chemistry Chemical Physics, 2013, 15, 9845.	1.3	36

#	Article	IF	Citations
181	A simple iterative method for the synthesis of \hat{l}^2 -($1\hat{a}\dagger$ '6)-glucosamine oligosaccharides. Carbohydrate Research, 2013, 371, 68-76.	1.1	13
182	Thin film properties of triphenylamine-cored dendrimers: A molecular approach to control aggregation. Thin Solid Films, 2013, 548, 190-194.	0.8	1
183	Unlocking the full potential of light emitting field-effect transistors by engineering charge injection layers. Organic Electronics, 2013, 14, 2953-2961.	1.4	25
184	Solution and solid-state electrochemiluminescence of a fac-tris(2-phenylpyridyl)iridium(III)-cored dendrimer. Electrochimica Acta, 2013, 100, 72-77.	2.6	23
185	Dopingâ€Induced Screening of the Builtâ€inâ€Field in Organic Solar Cells: Effect on Charge Transport and Recombination. Advanced Energy Materials, 2013, 3, 321-327.	10.2	54
186	Identifying the optimum composition in organic solar cells comprising non-fullerene electron acceptors. Journal of Materials Chemistry A, 2013, 1, 5989.	5.2	24
187	Design protocols in triarylamine cored dendrimer-based explosive sensors. Journal of Materials Chemistry C, 2013, 1, 1322-1329.	2.7	21
188	A Narrow Optical Gap Small Molecule Acceptor for Organic Solar Cells. Advanced Energy Materials, 2013, 3, 54-59.	10.2	107
189	Controlling Hierarchy in Solutionâ€processed Polymer Solar Cells Based on Crosslinked P3HT. Advanced Energy Materials, 2013, 3, 105-112.	10.2	58
190	Spectral response tuning using an optical spacer in broad-band organic solar cells. Applied Physics Letters, 2013, 102, 013302.	1.5	8
191	The nature and role of trap states in a dendrimer-based organic field-effect transistor explosive sensor. Applied Physics Letters, 2013, 102, 243301.	1.5	3
192	Channel II photocurrent quantification in narrow optical gap polymer-fullerene solar cells with complimentary acceptor absorption. Applied Physics Letters, 2013, 102, 223302.	1.5	15
193	In-plane superfluid density and microwave conductivity of the organic superconductorîº-(BEDT-TTF)2Cu[N(CN)2]Br: Evidence ford-wave pairing and resilient quasiparticles. Physical Review B, 2013, 88, .	1.1	28
194	Simultaneous Enhancement of Brightness, Efficiency, and Switching in RGB Organic Light Emitting Transistors. Advanced Materials, 2013, 25, 6213-6218.	11.1	77
195	Structured-gate organic field-effect transistors. Journal Physics D: Applied Physics, 2012, 45, 225105.	1.3	8
196	High power efficiency phosphorescent poly(dendrimer) OLEDs. Optics Express, 2012, 20, A213.	1.7	20
197	Carbazole/iridium dendrimer side-chain phosphorescent copolymers for efficient light emitting devices. New Journal of Chemistry, 2012, 36, 407-413.	1.4	15
198	A new diketopyrrolopyrrole-based co-polymer for ambipolar field-effect transistors and solar cells. Organic Electronics, 2012, 13, 1981-1988.	1.4	21

#	Article	IF	CITATIONS
199	Injected charge extraction by linearly increasing voltage for bimolecular recombination studies in organic solar cells. Applied Physics Letters, 2012, 101, 083306.	1.5	42
200	Large area monolithic organic solar cells. Proceedings of SPIE, 2012, , .	0.8	1
201	Kinetics of charge transfer processes in organic solar cells: Implications for the design of acceptor molecules. Organic Electronics, 2012, 13, 2538-2545.	1.4	11
202	The â€~double dendron' approach to host free phosphorescent poly(dendrimer) OLEDs. Polymer Chemistry, 2012, 3, 734.	1.9	16
203	A flexible n-type organic semiconductor for optoelectronics. Journal of Materials Chemistry, 2012, 22, 1800-1806.	6.7	28
204	Poly(dendrimers) with Phosphorescent Iridium(III) Complex-Based Side Chains Prepared via Ring-Opening Metathesis Polymerization. Macromolecules, 2012, 45, 2963-2971.	2.2	34
205	Superconductivity suppression and peak resistivity enhancement for thin crystals of κâ€(BEDTâ€₁TF) ₂ Cu(SCN) ₂ . Physica Status Solidi (B): Basic Research, 2012, 249, 979-984.	0.7	6
206	Effects of Fluorination on Iridium(III) Complex Phosphorescence: Magnetic Circular Dichroism and Relativistic Time-Dependent Density Functional Theory. Inorganic Chemistry, 2012, 51, 2821-2831.	1.9	48
207	Fluorescent carbazole dendrimers for the detection of nitroaliphatic taggants and accelerants. Journal of Materials Chemistry, 2012, 22, 12507.	6.7	34
208	Efficient, Large Area ITOâ€andâ€PEDOTâ€free Organic Solar Cell Subâ€modules. Advanced Materials, 2012, 24, 2572-2577.	11.1	148
209	Factors Influencing the Efficiency of Current Collection in Large Area, Monolithic Organic Solar Cells. Advanced Energy Materials, 2012, 2, 1338-1342.	10.2	27
210	Deuteration of molecules for neutron reflectometry on organic light-emitting diode thin films. Tetrahedron Letters, 2012, 53, 931-935.	0.7	21
211	Charge Transport in a Highly Phosphorescent Iridium(III) Complexâ€Cored Dendrimer with Double Dendrons. Advanced Functional Materials, 2012, 22, 157-165.	7.8	18
212	Nanostructured, Active Organic–Metal Junctions for Highly Efficient Charge Generation and Extraction in Polymerâ€Fullerene Solar Cells. Advanced Materials, 2012, 24, 1055-1061.	11.1	37
213	Diffusion – the Hidden Menace in Organic Optoelectronic Devices. Advanced Materials, 2012, 24, 822-826.	11.1	35
214	Relativistic effects in a phosphorescent Ir(III) complex. Physical Review B, 2011, 83, .	1.1	39
215	Tuning Hyperfine Fields in Conjugated Polymers for Coherent Organic Spintronics. Journal of the American Chemical Society, 2011, 133, 2019-2021.	6.6	49
216	Solid State Dendrimer Sensors: Effect of Dendrimer Dimensionality on Detection and Sequestration of 2,4-Dinitrotoluene. Journal of Physical Chemistry C, 2011, 115, 18366-18371.	1.5	28

#	Article	IF	Citations
217	Synthesis and Self-Assembly of Donor–Acceptor–Donor Based Oligothiophenes and Their Optoelectronic Properties. Journal of Physical Chemistry C, 2011, 115, 14369-14376.	1.5	31
218	Efficient Phosphorescence by Reducing Intrachain Chromophore Interactions in Dendrimer-Containing Polymers. Journal of Physical Chemistry C, 2011, 115, 25464-25469.	1.5	6
219	Explosive Sensing with Fluorescent Dendrimers: The Role of Collisional Quenching. Chemistry of Materials, 2011, 23, 789-794.	3.2	134
220	Photophysical Properties of 9,10-Disubstituted Anthracene Derivatives in Solution and Films. Journal of Physical Chemistry A, 2011, 115, 7401-7405.	1.1	27
221	A dendronised polymer for bulk heterojunction solar cells. Polymer Chemistry, 2011, 2, 2668.	1.9	17
222	Fluorescent carbazole dendrimers for the detection of explosives. Polymer Chemistry, 2011, 2, 2360.	1.9	84
223	A solution processable fluorene-benzothiadiazole small molecule for n-type organic field-effect transistors. Applied Physics Letters, 2011, 98, 153301.	1.5	19
224	A Direct, Heavy Metal Free Synthesis of the ?-1,6-Linked GlcNAc Disaccharide. Australian Journal of Chemistry, 2011, 64, 536.	0.5	4
225	Thermodynamics of Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation of Luminescent Dendrimers. , 2011, , .		0
226	Investigating Morphology and Stability of Facâ€tris (2â€phenylpyridyl)iridium(III) Films for OLEDs. Advanced Functional Materials, 2011, 21, 2225-2231.	7.8	44
227	Morphology of Allâ€Solutionâ€Processed "Bilayer―Organic Solar Cells. Advanced Materials, 2011, 23, 766-770.	11.1	228
228	A Small Molecule Nonâ€fullerene Electron Acceptor for Organic Solar Cells. Advanced Energy Materials, 2011, 1, 73-81.	10.2	147
229	Spin–Orbit Coupling in Phosphorescent Iridium(III) Complexes. ChemPhysChem, 2011, 12, 2429-2438.	1.0	73
230	Calculation of solid state molecular ionisation energies and electron affinities for organic semiconductors. Organic Electronics, 2011, 12, 394-403.	1.4	69
231	Vertical morphology in solution-processed organic solar cells. , 2011, , .		0
232	Morphology dependent electron transport in an n-type electron accepting small molecule for solar cell applications. Applied Physics Letters, 2011, 98, 083301.	1.5	7
233	Mechanisms of Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation. Critical Reviews in Solid State and Materials Sciences, 2011, 36, 16-45.	6.8	38
234	Charge transport properties of carbazole dendrimers in organic field-effect transistors. Proceedings of SPIE, $2011,\ldots$	0.8	5

#	Article	IF	CITATIONS
235	A green-absorbing dendrimer-based photodetector for image sensing applications. Proceedings of SPIE, 2010, , .	0.8	0
236	Fluoride Sensing by Catecholâ€Based Ï€â€Electron Systems. ChemPhysChem, 2010, 11, 3517-3521.	1.0	8
237	Photoâ€Rechargeable Battery Effect in First Generation Cationicâ€Cyanine Dendrimers. Advanced Materials, 2010, 22, 3954-3958.	11.1	23
238	Improving efficiency of MEH-PPV/TiO2 solar cells by lithium salt modification. Organic Electronics, 2010, 11, 649-657.	1.4	17
239	Multi-layer organic light-emitting diodes processed from solution using phosphorescent dendrimers in a polymer host. Organic Electronics, 2010, 11, 1005-1009.	1.4	22
240	Effects of solution processing and thermal annealing on the phosphorescence of iridium(III) complex-cored dendrimer films. Organic Electronics, 2010, 11, 62-66.	1.4	5
241	A phosphorescent poly(dendrimer) with increased viscosity for solution-processed OLED devices. Organic Electronics, 2010, 11, 1561-1568.	1.4	23
242	Determining the absorption tolerance of single chromophore photodiodes for machine vision. Applied Physics Letters, 2010, 96, 253303.	1.5	33
243	Light-emitting dendrimer film morphology: A neutron reflectivity study. Applied Physics Letters, 2010, 96, 263302.	1.5	15
244	Thickness dependent absorption spectra in conjugated polymers: Morphology or interference?. Applied Physics Letters, 2010, 96, 053305.	1.5	24
245	High quality shadow masks for top contact organic field effect transistors using deep reactive ion etching. Journal of Micromechanics and Microengineering, 2010, 20, 075037.	1.5	17
246	Current–voltage characteristics of dendrimer light-emitting diodes. Journal Physics D: Applied Physics, 2010, 43, 385106.	1.3	3
247	The development of poly(dendrimer)s for advanced processing. Polymer Chemistry, 2010, 1, 730.	1.9	24
248	The effect of dendronisation of arylamine centred chromophores on field effect transistor performance. Polymer Chemistry, 2010, 1, 1117.	1.9	13
249	Effect of Dimensionality in Dendrimeric and Polymeric Fluorescent Materials for Detecting Explosives. Macromolecules, 2010, 43, 10253-10261.	2.2	70
250	Facile Iterative Synthesis of Biphenyl Dendrons with a Functionalized Focus. Organic Letters, 2010, 12, 4338-4340.	2.4	10
251	A Phosphorescent Poly(dendrimer) Containing Iridium(III) Complexes: Synthesis and Light-Emitting Properties. Macromolecules, 2010, 43, 6986-6994.	2.2	59
252	Singlet energy transfer and singlet-singlet annihilation in light-emitting blends of organic semiconductors. Applied Physics Letters, 2009, 95, 183305.	1.5	22

#	Article	IF	Citations
253	Sensing nitroaromatic analytes with a bifluorene-cored dendrimer. , 2009, , .		16
254	Dendrimers for photon harvesting in organic and organic/inorganic hybrid solar cells. Proceedings of SPIE, 2009, , .	0.8	0
255	Control of Charge Transport in Iridium(III) Complex ored Carbazole Dendrimers by Generation and Structural Modification. Advanced Functional Materials, 2009, 19, 317-323.	7.8	63
256	Phosphorescent Lightâ€Emitting Transistors: Harvesting Triplet Excitons. Advanced Materials, 2009, 21, 4957-4961.	11,1	44
257	Effects of thermal annealing on the photophysical properties of bisfluorene-cored dendrimer films. Organic Electronics, 2009, 10, 803-808.	1.4	14
258	Ruthenium complex-cored dendrimers: Shedding light on efficiency trade-offs in dye-sensitised solar cells. Organic Electronics, 2009, 10, 1356-1363.	1.4	34
259	High-Triplet-Energy Dendrons: Enhancing the Luminescence of Deep Blue Phosphorescent Iridium(III) Complexes. Journal of the American Chemical Society, 2009, 131, 16681-16688.	6.6	188
260	Chemosensing of 1,4-dinitrobenzene using bisfluorene dendrimer distributed feedback lasers. Applied Physics Letters, 2009, 95, .	1.5	41
261	A study on the preparation and photophysical properties of an iridium(iii) complexed homopolymer. Journal of Materials Chemistry, 2009, 19, 4952.	6.7	22
262	The development of phenylethylene dendrons for blue phosphorescent emitters. Journal of Materials Chemistry, 2009, 19, 3213.	6.7	38
263	Solid-State Dendrimer Sensors: Probing the Diffusion of an Explosive Analogue Using Neutron Reflectometry. Langmuir, 2009, 25, 12800-12805.	1.6	68
264	Enhancing the Properties of Ruthenium Dyes by Dendronization. Chemistry of Materials, 2009, 21, 3315-3324.	3.2	16
265	Solutionâ€Processible Phosphorescent Blue Dendrimers Based on Biphenylâ€Dendrons and <i>Fac</i> å€tris(phenyltriazolyl)iridium(III) Cores. Advanced Functional Materials, 2008, 18, 3080-3090.	7.8	104
266	Twoâ€Photon Absorption and Lasing in Firstâ€Generation Bisfluorene Dendrimers. Advanced Materials, 2008, 20, 1940-1944.	11.1	40
267	Electric field and temperature dependence of the hole mobility in a bis-fluorene cored dendrimer. Organic Electronics, 2008, 9, 220-226.	1.4	22
268	Photoinduced charge separation in poly(1,4-phenylenevinylene) derivatives studied by electron paramagnetic resonance. Organic Electronics, 2008, 9, 809-815.	1.4	3
269	Non-radiative decay mechanisms in blue phosphorescent iridium(III) complexes. Organic Electronics, 2008, 9, 377-384.	1.4	37
270	Tunnelling conductance of vectorial porphyrin monolayers. Journal of Materials Chemistry, 2008, 18, 3109.	6.7	12

#	Article	IF	Citations
271	Regiospecific \hat{l}^2 -functionalization of free-base porphyrins by pseudohalogens. Organic and Biomolecular Chemistry, 2008, 6, 879.	1.5	14
272	A rapid route to carbazole containing dendrons and phosphorescent dendrimers. Journal of Materials Chemistry, 2008, 18, 2121.	6.7	58
273	Iridium Metal Complexes as an Unambiguous Probe of Intramolecular Vibrational Redistribution. Journal of the American Chemical Society, 2008, 130, 11842-11843.	6.6	18
274	Thickness Dependence of the Fluorescence Lifetime in Films of Bisfluorene-Cored Dendrimers. Journal of Physical Chemistry C, 2008, 112, 20463-20468.	1.5	16
275	Triplet Exciton Diffusion and Phosphorescence Quenching in Iridium(III)-Centered Dendrimers. Physical Review Letters, 2008, 100, 017402.	2.9	65
276	Temperature dependence of the triplet diffusion and quenching rates in films of an <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">Ir</mml:mi><mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mi>ppy</mml:mi><ndendrimer. .<="" 2008,="" 77,="" b,="" physical="" review="" td=""><td>nml:mo>)<</td><td>/mml:mo><!--</td--></td></ndendrimer.></mml:mrow></mml:msub></mml:mrow></mml:math>	nml:mo>)<	/mml:mo> </td
277	Light-emitting poly(dendrimer)s. Proceedings of SPIE, 2008, , .	0.8	O
278	Influence of the dendron chemical structure on the photophysical properties of bisfluorene-cored dendrimers. Journal of Chemical Physics, 2008, 128, 204703.	1,2	30
279	Optimization of the Luminescence Efficiencies in Solution-Processed Phosphorescent Dendrimers. Journal of Display Technology, 2007, 3, 233-237.	1.3	16
280	Amplified spontaneous emission and lasing properties of bisfluorene-cored dendrimers. Applied Physics Letters, 2007, 91, .	1.5	80
281	Solution processable phosphorescent rhenium(i) dendrimers. Journal of Materials Chemistry, 2007, 17, 4255.	6.7	38
282	Highly Branched Phosphorescent Dendrimers for Efficient Solution-Processed Organic Light-Emitting Diodes. Advanced Functional Materials, 2007, 17, 1149-1152.	7.8	80
283	The Development of Light-Emitting Dendrimers for Displays. Advanced Materials, 2007, 19, 1675-1688.	11.1	460
284	Effect of Generation and Soft Lithography on Semiconducting Dendrimer Lasers. Advanced Materials, 2007, 19, 3000-3003.	11.1	23
285	Electronically asymmetric poly(1,4-phenylenevinylene)s for photovoltaic cells. Organic Electronics, 2007, 8, 801-812.	1.4	4
286	Development of Dendrimers:Â Macromolecules for Use in Organic Light-Emitting Diodes and Solar Cells. Chemical Reviews, 2007, 107, 1097-1116.	23.0	715
287	Chapter 20. From the Synthesis of Acetylenic Natural Products to Seeing the Light with Polymers. , 2007, , 334-345.		0
288	Blue Phosphorescence from Iridium(III) Complexes at Room Temperature. Chemistry of Materials, 2006, 18, 5119-5129.	3.2	221

#	Article	IF	Citations
289	Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes. Applied Physics Letters, 2006, 88, 161105.	1.5	62
290	The synthesis and properties of iridium cored dendrimers with carbazole dendrons. Organic Electronics, 2006, 7, 85-98.	1.4	46
291	Singlet exciton diffusion in MEH-PPV films studied by exciton–exciton annihilation. Organic Electronics, 2006, 7, 452-456.	1.4	164
292	Study of the effect of changing the microstructure of titania layers on composite solar cell performance. Thin Solid Films, 2006, 511-512, 523-528.	0.8	20
293	Two-fold efficiency increase in nanocrystalline-TiO 2 /polymer photovoltaic devices by interfacial modification with a lithium salt. , 2006, , .		1
294	A Light-Blue Phosphorescent Dendrimer for Efficient Solution-ProcessedÂLight-Emitting Diodes. Advanced Functional Materials, 2005, 15, 1451-1458.	7.8	146
295	Encapsulated Cores: Host-Free Organic Light-Emitting Diodes Based on Solution-Processible Electrophosphorescent Dendrimers. Advanced Materials, 2005, 17, 1945-1948.	11.1	148
296	Triplet exciton diffusion in fac-tris(2-phenylpyridine) iridium(III)-cored electroluminescent dendrimers. Applied Physics Letters, 2005, 86, 091104.	1.5	114
297	Ultrafast depolarization of the fluorescence in a conjugated polymer. Physical Review B, 2005, 72, .	1.1	105
298	Simple color tuning of phosphorescent dendrimer light emitting diodes. Applied Physics Letters, 2005, 86, 161104.	1.5	28
299	A short route to chlorin-α-diones. Journal of Porphyrins and Phthalocyanines, 2005, 09, 444-450.	0.4	6
300	Electrochemical and spectroelectrochemical properties of building blocks for molecular arrays: reactions of quinoxalino[2,3-b]porphyrins containing metal(II) ions. Journal of Porphyrins and Phthalocyanines, 2005, 09, 142-151.	0.4	18
301	Investigating the Effect of Steric Crowding in Phosphorescent Dendrimers. Macromolecules, 2005, 38, 9564-9570.	2.2	45
302	Relating the physical structure and optical properties of conjugated polymers using neutron reflectivity in combination with photoluminescence spectroscopy. Journal of Applied Physics, 2004, 95, 2391-2396.	1.1	27
303	Tuning of emission color for blue dendrimer blend light-emitting diodes. Applied Physics Letters, 2004, 85, 1463-1465.	1.5	57
304	Solution-Processable Red Phosphorescent Dendrimers for Light-Emitting Device Applications. Advanced Materials, 2004, 16, 557-560.	11.1	175
305	Fast, long-range electron-transfer reactions of a †blue†copper protein coupled non-covalently to an electrode through a stilbenyl thiolate monolayer. Chemical Communications, 2004, , 316-317.	2.2	28
306	The synthesis and properties of solution processable red-emitting phosphorescent dendrimers. Journal of Materials Chemistry, 2004, 14, 2881.	6.7	63

#	Article	IF	Citations
307	Charge transport in highly efficient iridium cored electrophosphorescent dendrimers. Journal of Applied Physics, 2004, 95, 438-445.	1.1	68
308	Photophysics of Fac-Tris(2-Phenylpyridine) Iridium(III) Cored Electroluminescent Dendrimers in Solution and Films. Journal of Physical Chemistry B, 2004, 108, 1570-1577.	1.2	115
309	Controlling the conjugation length in poly[5-n-butyl-2-(2-ethylhexyl)-1,4-phenylenevinylene]: exploring the scope of hydrogen radical substitution of leaving groups on precursor polymers. Synthetic Metals, 2004, 145, 159-169.	2.1	8
310	Optical amplification in a first-generation dendritic organic semiconductor. Optics Letters, 2004, 29, 869.	1.7	28
311	Non-steady-state operation of polymer/TiO 2 photovoltaic devices. , 2004, , .		0
312	Conjugated dendrimers: a modular approach to materials for full-color displays. , 2004, 5214, 50.		0
313	Nanocomposite titanium dioxide/polymer photovoltaic cells: effects of TiO 2 microstructure, time, and illumination power., 2004, 5215, 32.		5
314	The Effect of Core Delocalization on Intermolecular Interactions in Conjugated Dendrimers. Advanced Functional Materials, 2003, 13, 211-218.	7.8	45
315	Influence of molecular structure on the properties of dendrimer light-emitting diodes. Organic Electronics, 2003, 4, 71-76.	1.4	48
316	Synthesis and Properties of Highly Efficient Electroluminescent Green Phosphorescent Iridium Cored Dendrimers. Macromolecules, 2003, 36, 9721-9730.	2.2	155
317	Bright electroluminescence from a new conjugated dendrimer. Synthetic Metals, 2003, 137, 1125-1126.	2.1	12
318	Conformational disorder and energy migration in MEH-PPV with partially broken conjugation. Journal of Chemical Physics, 2003, 118, 7644.	1.2	99
319	Probing the polymer-electrode interface using neutron reflection. Applied Physics Letters, 2003, 82, 2724-2726.	1.5	12
320	The effect of intermolecular interactions on the electro-optical properties of porphyrin dendrimers with conjugated dendrons. Journal of Materials Chemistry, 2003, 13, 235-242.	6.7	19
321	Polarized organic electroluminescence: Ordering from the top. Applied Physics Letters, 2003, 83, 5347-5349.	1.5	18
322	Highly efficient single-layer dendrimer light-emitting diodes with balanced charge transport. Applied Physics Letters, 2003, 82, 4824-4826.	1.5	128
323	Neutron reflection study on soluble and insoluble 9066-9071.	1.1	18
324	Origin of spectral broadening in π-conjugated amorphous semiconductors. Physical Review B, 2002, 66, .	1.1	13

#	Article	IF	CITATIONS
325	Exciton confinement in organic dendrimer quantum wells for opto-electronic applications. Journal of Chemical Physics, 2002, 116, 455-459.	1.2	30
326	Bright electroluminescence from a conjugated dendrimer. Applied Physics Letters, 2002, 81, 2285-2287.	1.5	44
327	Nondispersive hole transport in a spin-coated dendrimer film measured by the charge-generation-layer time-of-flight method. Applied Physics Letters, 2002, 81, 3266-3268.	1.5	35
328	Improvement of luminescence efficiency by electrical annealing in single-layer organic light-emitting diodes based on a conjugated dendrimer. Journal Physics D: Applied Physics, 2002, 35, 520-523.	1.3	20
329	Efficient solution-processed dendrimer OLEDs. , 2002, 4918, 117.		0
330	Control of Intrachromophore Excitonic Coherence in Electroluminescent Conjugated Dendrimers. Journal of Physical Chemistry B, 2002, 106, 7647-7653.	1.2	62
331	Investigations of excitation energy transfer and intramolecular interactions in a nitrogen corded distrylbenzene dendrimer system. Journal of Chemical Physics, 2002, 116, 8893-8903.	1.2	111
332	Synthesis and Excited State Spectroscopy of Tris(distyrylbenzenyl)amine-cored Electroluminescent Dendrimers. Macromolecules, 2002, 35, 7891-7901.	2.2	35
333	Thermal routes to low HOMO–LUMO energy gap poly(arylenevinylene)s. Journal of Materials Chemistry, 2002, 12, 200-205.	6.7	22
334	High-efficiency green phosphorescence from spin-coated single-layer dendrimer light-emitting diodes. Applied Physics Letters, 2002, 80, 2645-2647.	1.5	227
335	Novel Heterolayer Organic Light-Emitting Diodes Based on a Conjugated Dendrimer. Advanced Functional Materials, 2002, 12, 507.	7.8	58
336	Green Phosphorescent Dendrimer for Light-Emitting Diodes. Advanced Materials, 2002, 14, 975-979.	11.1	8
337	Nanoengineering of organic semiconductors for light-emitting diodes: control of charge transport. Synthetic Metals, 2001, 116, 357-362.	2.1	18
338	Cyano-substituted model compounds and conjugated polymers of PPV. Synthetic Metals, 2001, 119, 635-636.	2.1	10
339	The optoelectronic properties of electroluminescent dendrimers. Synthetic Metals, 2001, 121, 1671-1672.	2.1	27
340	Control of conjugation in poly(arylenevinylene)s. Synthetic Metals, 2001, 119, 269-270.	2.1	5
341	Charge transport in conjugated dendrimers for light-emitting diodes. Synthetic Metals, 2001, 121, 1703-1704.	2.1	10
342	Investigating the effect of conjugation in MEH-PPV. Synthetic Metals, 2001, 119, 571-572.	2.1	14

#	Article	IF	Citations
343	Time-resolved PL studies of partially conjugated MEH-PPV control of excimer emission. Synthetic Metals, 2001, 119, 575-576.	2.1	8
344	Control of polymer–electrode interactions: the effect of leaving group on the optical properties and device characteristics of EHPPV. Journal of Materials Chemistry, 2001, 11, 2228-2231.	6.7	26
345	A new synthetic approach to porphyrin- $\hat{l}\pm$ -diones and a -2,3,12,13-tetraone: building blocks for laterally conjugated porphyrin arrays. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 14-20.	1.3	40
346	Structure–property relationships in conjugated molecules. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 85, 190-194.	1.7	36
347	Control of Electrophosphorescence in Conjugated Dendrimer Light-Emitting Diodes. Advanced Functional Materials, 2001, 11, 287-294.	7.8	85
348	Control of Charge Transport and Intermolecular Interaction in Organic Light-Emitting Diodes by Dendrimer Generation. Advanced Materials, 2001, 13, 258-261.	11.1	140
349	Control of mobility in molecular organic semiconductors by dendrimer generation. Physical Review B, 2001, 63, .	1.1	98
350	Origin of line broadening in the electronic absorption spectra of conjugated polymers: Three-pulse-echo studies of MEH-PPV in toluene. Physical Review B, 2000, 61, 13670-13678.	1.1	81
351	Ultrafast polarized fluorescence dynamics in an organic dendrimer. Applied Physics Letters, 2000, 77, 1120-1122.	1.5	29
352	Optical studies of polymer light-emitting diodes using electroabsorption measurements. Synthetic Metals, 2000, 111-112, 241-244.	2.1	3
353	Bis-porphyrin arrays. Part 3.†The synthesis of model bis-porphyrin dimers and an electrochemical study. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 1231-1240.	1.3	15
354	Bis-porphyrin arrays. Part 2.â∈ The synthesis of asymmetrically substituted bis-porphyrins. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 605-609.	1.3	9
355	Comparison of precursor polymer routes to and electronic properties of a new phenylacetylene derivatised poly[2-(2′-ethylhexyloxy)-1,4-phenylenevinylene]. Journal of Materials Chemistry, 2000, 10, 275-281.	6.7	8
356	Electroluminescence from a new distyrylbenzene based triazine dendrimer. Journal of Materials Chemistry, 2000, 10, 867-871.	6.7	69
357	Effect of generation on the electronic properties of light-emitting dendrimers. , 1999, , .		3
358	Optical studies of electric fields in poly(2-methoxy-5-ethyl ($2\hat{a} \in ^2$ -hexyloxy) para-phenylene vinylene) light-emitting diodes. Applied Physics Letters, 1999, 74, 3714-3716.	1.5	35
359	Conjugated Dendrimers for Light-Emitting Diodes: Effect of Generation. Advanced Materials, 1999, 11, 371-374.	11.1	249
360	Bis-porphyrin arrays. Part 1. The synthesis of meso-halophenyl porphyrin- $\hat{l}\pm$ -diones. Journal of the Chemical Society Perkin Transactions 1, 1999, , 583-592.	0.9	20

#	Article	IF	CITATIONS
361	Linear and nonlinear optical properties of the conjugated polymers PPV and MEH-PPV. Physical Review B, 1999, 59, 15133-15142.	1.1	85
362	A study on the molecular weight of the chloro-precursor polymer to MEHPPV. Journal of Materials Chemistry, 1999, 9, 847-849.	6.7	5
363	Comparison of the electronic properties of poly[2-(2′-ethylhexyloxy)-1,4-phenylenevinylene] prepared by different precursor polymer routes. Journal of Materials Chemistry, 1999, 9, 2165-2170.	6.7	12
364	Control of colour and charge injection in conjugated dendrimer/polypyridine bilayer leds. Synthetic Metals, 1999, 102, 1571-1574.	2.1	29
365	Synthetic routes to phenylene vinylene dendrimers. Synthetic Metals, 1999, 102, 1468-1469.	2.1	16
366	The effect of dendrimer generation on LED efficiency. Synthetic Metals, 1999, 102, 922-923.	2.1	26
367	Charge injection into OLED's during operation studied by Electroabsorption screening. Synthetic Metals, 1999, 102, 1075-1076.	2.1	2
368	Synthesis of a porphyrin/conjugated polymer hybrid. Synthetic Metals, 1999, 102, 1089-1090.	2.1	15
369	Conjugated dendrimers for LEDs: Control of colour. Synthetic Metals, 1999, 102, 1113-1114.	2.1	57
370	Substituted PPV's for blue light. Synthetic Metals, 1999, 102, 1120-1121.	2.1	0
371	A New Electron-withdrawing Group Containing Poly(1,4-phenylenevinylene). Macromolecules, 1999, 32, 111-117.	2.2	48
372	A Facile Iterative Procedure for the Preparation of Dendrimers Containing Luminescent Cores and Stilbene Dendrons. Macromolecules, 1999, 32, 5985-5993.	2.2	110
373	Electroabsorption studies of PPV and MEH-PPV. Optical Materials, 1998, 9, 88-93.	1.7	36
374	A study on the oxidation of 2-hydroxyporphyrins to porphyrin- \hat{l}_{\pm} -diones. Journal of the Chemical Society Perkin Transactions 1, 1998, , 2847-2852.	0.9	16
375	<title>Poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4- phenylenevinylene) prepared via a chloro precursor route</title> ., 1997,,.		0
376	<title>Triazole-containing copolymer for use as an electron transport material in multilayer
LEDs</title> ., 1997, 3148, 178.		0
377	Chelation of diamine ligands to zinc porphyrin monolayers amide-linked to glass. Journal of the Chemical Society Perkin Transactions 1, 1997, , 2581-2586.	0.9	30
378	Insoluble Poly [2-(2?-ethylhexyloxy)-5-methoxy-1,4-phenylenevinylene] for Use in Multilayer Light-Emitting Diodes. Advanced Materials, 1997, 9, 1171-1174.	11.1	49

#	Article	IF	Citations
379	A blue-emitting triazole-based conjugated polymer. Advanced Materials, 1997, 9, 1174-1178.	11.1	61
380	The synthesis of an electronically asymmetric substituted poly(arylenevinylene); poly{2-(2′-ethylhexyloxy)-5-[(E)-4″-nitrostyryl]-l,4-phenyienevinylene}. Journal of Materials Chemistry, 1996, 6, 1253-1258.	6.7	9
381	Solid-state-concentration effects on the optical absorption and emission of poly(p-phenylene) Tj ETQq1 1 0.7843	14 rgBT /0	Overlock 10
382	Porphyrins with appended phenanthroline units: a means by which porphyrin π-systems can be connected to an external redox centre. Journal of the Chemical Society Chemical Communications, 1995, , 1921-1923.	2.0	84
383	Experimental and Theoretical Studies of the Electronic Structure of Poly(p-phenylenevinylene) and Some Ring-Substituted Derivatives. Macromolecules, 1995, 28, 1959-1965.	2.2	65
384	The efficiency and time-dependence of luminescence from poly (p-phenylene vinylene) and derivatives. Chemical Physics Letters, 1993, 213, 472-478.	1,2	146
385	Large changes in optical response through chemical pre-ordering of poly(p-phenylenevinylene). Advanced Materials, 1993, 5, 40-43.	11.1	103
386	Time-resolved luminescence measurements in poly(p-phenylenevinylene). Synthetic Metals, 1993, 54, 281-288.	2.1	71
387	Chemical tuning of the electronic properties of poly(p-phenylenevinylene)-based copolymers. Journal of the American Chemical Society, 1993, 115, 10117-10124.	6.6	236
388	<title>Electroluminescent devices made with conjugated polymers</title> ., 1993, 1910, 84.		11
389	Conformational effects in poly(p-phenylene vinylene)s revealed by low-temperature site-selective fluorescence. Journal of Physics Condensed Matter, 1993, 5, 247-260.	0.7	189
390			

#	Article	IF	CITATIONS
397	Photoinduced absorption of structurally improved poly(p-phenylene vinylene) - no evidence for bipolarons. Synthetic Metals, 1993, 55, 230-234.	2.1	22
398	Hole-transporting compounds for multi-layer polymer light-emitting diodes. Synthetic Metals, 1993, 57, 4163-4167.	2.1	36
399	Photoluminescence and electroluminescence in conjugated polymeric systems. Synthetic Metals, 1993, 57, 4031-4040.	2.1	111
400	Chain alignment in poly(p-phenylene vinylene) on oriented substrates. Synthetic Metals, 1993, 55, 454-459.	2.1	27
401	Chemical control of colour and electroluminescent device efficiency in copolymeric poly(arylenevylenes). Synthetic Metals, 1993, 55, 936-941.	2.1	20
402	Femtosecond transient absorption measurements in poly(arylenevinylene)s. Synthetic Metals, 1993, 55, 15-21.	2.1	34
403	Optical probes of electronics states injected into poly(p-phenylenevinylene) electroluminescent devices. Synthetic Metals, 1993, 57, 4117-4122.	2.1	10
404	The effect of side groups on the structure and ordering of poly(p-phenylene vinylene) derivatives. Synthetic Metals, 1993, 55, 449-453.	2.1	15
405	Optical spectroscopy of highly ordered poly(p-phenylene vinylene). Journal of Physics Condensed Matter, 1993, 5, 7155-7172.	0.7	227
406	Structural order in poly(p-phenylene vinylene). Synthetic Metals, 1993, 55, 434-439.	2.1	18
407	<title>Electroluminescence from multilayer conjugated polymer devices-spatial control of exciton formation and emission</title> ., 1993, 1910, 111.		2
408	Poly(pâ€phenylenevinylene) lightâ€emitting diodes: Enhanced electroluminescent efficiency through charge carrier confinement. Applied Physics Letters, 1992, 61, 2793-2795.	1.5	683
409	Electroluminescence-detected magnetic-resonance study of polyparaphenylenevinylene (PPV)-based light-emitting diodes. Physical Review B, 1992, 46, 15072-15077.	1.1	123
410	Photoinduced absorption and photoluminescence in poly(2,5-dimethoxy-p-phenylene vinylene). Physical Review B, 1992, 46, 7379-7389.	1.1	90
411	Optoelectronic Device Physics Based on Conjugated Polymers. Molecular Crystals and Liquid Crystals, 1992, 216, 33-38.	0.3	4
412	Electro-Absorption Spectroscopy on Poly(Arylene Vinylene)s. Molecular Crystals and Liquid Crystals, 1992, 216, 117-121.	0.3	15
413	Blue-Shifted Electroluminescence from a Stable Precursor to Poly(P -Phenylene Vinylene). Molecular Crystals and Liquid Crystals, 1992, 216, 111-116.	0.3	25
414	Light-Emitting Diodes Based on Conjugated Polymers: Control of Colour and Efficiency. Materials Research Society Symposia Proceedings, 1992, 247, 647.	0.1	73

#	Article	IF	CITATIONS
415	Synthesis of a segmented conjugated polymer chain giving a blue-shifted electroluminescence and improved efficiency. Journal of the Chemical Society Chemical Communications, 1992, , 32.	2.0	116
416	A study on the elimination reaction of sulfonium polyelectrolyte precursor polymers to poly(p-phenylenevinylene). Journal of the Chemical Society Chemical Communications, 1992, , 1685.	2.0	17
417	Precursor route chemistry and electronic properties of poly(p-phenylenevinylene), poly[(2,5-dimethyl-p-phenylene)vinylene] and poly[(2,5-dimethoxy-p-phenylene)vinylene]. Journal of the Chemical Society Perkin Transactions 1, 1992, , 3225.	0.9	195
418	Chemical tuning of electroluminescent copolymers to improve emission efficiencies and allow patterning. Nature, 1992, 356, 47-49.	13.7	748
419	Electroluminescence from multilayer conjugated polymer devices: Spatial control of exciton formation and emission. Chemical Physics Letters, 1992, 200, 46-54.	1.2	142
420	An approach to porphyrin-based molecular wires: synthesis of a bis(porphyrin)tetraone and its conversion to a linearly conjugated tetrakisporphyrin system. Journal of the Chemical Society Chemical Communications, 1991, , 1569.	2.0	200
421	Synthesis and characterisation of doped and undoped poly(2,5-dimethoxy phenylene vinylene). Synthetic Metals, 1991, 41, 931-934.	2.1	17
422	Light emission from poly(p-phenylene vinylene): A comparison between photo- and electro-luminescence. Synthetic Metals, 1991, 43, 3135-3141.	2.1	42
423	A new method for the synthesis of porphyrin- \hat{l} ±-diones that is applicable to the synthesis of trans-annular extended porphyrin systems. Journal of the Chemical Society Chemical Communications, 1991, , 1567-1568.	2.0	71
424	Control of order in poly(arylene vinylene) conjugated polymers. Synthetic Metals, 1991, 41, 301-304.	2.1	17
425	Regiospecific introduction of four substituents to porphyrin systems at antipodal pyrrolenic positions. Journal of the Chemical Society Chemical Communications, 1991, , 1564.	2.0	81
426	Studies on the efficient synthesis of poly(phenylenevinylene) (PPV) and poly (dimethoxy) Tj ETQq0 0 0 rgBT /Ove	rlock 10 T	f 50 302 Td (
427	Light-emitting diodes based on conjugated polymers. Nature, 1990, 347, 539-541.	13.7	10,985
428	Photoexcited states in poly(p-phenylene vinylene): Comparison withtrans, trans-distyrylbenzene, a model oligomer. Physical Review B, 1990, 42, 11670-11681.	1.1	272
429	Rigid, laterally-bridged bis-porphyrin system. Journal of the Chemical Society Chemical Communications, 1987, , 39.	2.0	104
430	Efficient electrophosphorescent dendrimer LEDs. , 0, , .		1
431	Effect of PEDOT:PSS on the performance of solution-processed blue phosphorescent organic light-emitting diodes with an exciplex host. Materials Advances, 0, , .	2.6	0
432	Influence of chromophore spacing on the stability and efficiency of host-free sky-blue dendrimer organic light emitting diodes. Journal of Materials Chemistry $C,0,$, .	2.7	5