
Slava Epelman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8808686/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Origin and Functions of Tissue Macrophages. Immunity, 2014, 41, 21-35.	14.3	1,191
2	Embryonic and Adult-Derived Resident Cardiac Macrophages Are Maintained through Distinct Mechanisms at Steady State and during Inflammation. Immunity, 2014, 40, 91-104.	14.3	1,120
3	Origin, fate and dynamics of macrophages at central nervous system interfaces. Nature Immunology, 2016, 17, 797-805.	14.5	872
4	Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16029-16034.	7.1	576
5	Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nature Immunology, 2019, 20, 29-39.	14.5	537
6	Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nature Reviews Immunology, 2015, 15, 117-129.	22.7	479
7	Chronic Heart Failure and Inflammation. Circulation Research, 2016, 119, 159-176.	4.5	475
8	The human heart contains distinct macrophage subsets with divergent origins and functions. Nature Medicine, 2018, 24, 1234-1245.	30.7	439
9	Tissue Resident CCR2â^' and CCR2+ Cardiac Macrophages Differentially Orchestrate Monocyte Recruitment and Fate Specification Following Myocardial Injury. Circulation Research, 2019, 124, 263-278.	4.5	424
10	Self-renewing resident arterial macrophages arise from embryonic CX3CR1+ precursors and circulating monocytes immediately after birth. Nature Immunology, 2016, 17, 159-168.	14.5	275
11	Exploiting macrophage autophagy-lysosomal biogenesis as a therapy for atherosclerosis. Nature Communications, 2017, 8, 15750.	12.8	258
12	The pancreas anatomy conditions the origin and properties of resident macrophages. Journal of Experimental Medicine, 2015, 212, 1497-1512.	8.5	235
13	Detection of Soluble Angiotensin-Converting Enzyme 2 in Heart Failure. Journal of the American College of Cardiology, 2008, 52, 750-754.	2.8	231
14	Primitive Embryonic Macrophages are Required for Coronary Development and Maturation. Circulation Research, 2016, 118, 1498-1511.	4.5	225
15	Induction of Lysosomal Biogenesis in Atherosclerotic Macrophages Can Rescue Lipid-Induced Lysosomal Dysfunction and Downstream Sequelae. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1942-1952.	2.4	187
16	Soluble Angiotensin-Converting Enzyme 2 in Human Heart Failure: Relation With Myocardial Function and Clinical Outcomes. Journal of Cardiac Failure, 2009, 15, 565-571.	1.7	180
17	Three tissue resident macrophage subsets coexist across organs with conserved origins and life cycles. Science Immunology, 2022, 7, eabf7777.	11.9	167
18	The Macrophage in Cardiac Homeostasis and Disease. Journal of the American College of Cardiology, 2018, 72, 2213-2230.	2.8	149

SLAVA EPELMAN

#	Article	IF	CITATIONS
19	CD8 T Cell-Mediated Killing of <i>Cryptococcus neoformans</i> Requires Granulysin and Is Dependent on CD4 T Cells and IL-15. Journal of Immunology, 2002, 169, 5787-5795.	0.8	142
20	Necrotic Myocardial Cells Release Damageâ€Associated Molecular Patterns That Provoke Fibroblast Activation In Vitro and Trigger Myocardial Inflammation and Fibrosis In Vivo. Journal of the American Heart Association, 2015, 4, e001993.	3.7	136
21	Limited proliferation capacity of aortic intima resident macrophages requires monocyte recruitment for atherosclerotic plaque progression. Nature Immunology, 2020, 21, 1194-1204.	14.5	115
22	NK Cells Use Perforin Rather than Granulysin for Anticryptococcal Activity. Journal of Immunology, 2004, 173, 3357-3365.	0.8	100
23	High-protein diets increase cardiovascular risk by activating macrophage mTOR to suppress mitophagy. Nature Metabolism, 2020, 2, 110-125.	11.9	85
24	Machine learning vs. conventional statistical models for predicting heart failure readmission and mortality. ESC Heart Failure, 2021, 8, 106-115.	3.1	82
25	Resident cardiac macrophages mediate adaptive myocardial remodeling. Immunity, 2021, 54, 2072-2088.e7.	14.3	76
26	Different Domains of <i>Pseudomonas aeruginosa</i> Exoenzyme S Activate Distinct TLRs. Journal of Immunology, 2004, 173, 2031-2040.	0.8	72
27	Lipopolysaccharide-Stimulated or Granulocyte-Macrophage Colony-Stimulating Factor-Stimulated Monocytes Rapidly Express Biologically Active IL-15 on Their Cell Surface Independent of New Protein Synthesis. Journal of Immunology, 2001, 167, 5011-5017.	0.8	69
28	Selective loss of resident macrophage-derived insulin-like growth factor-1 abolishes adaptive cardiac growth to stress. Immunity, 2021, 54, 2057-2071.e6.	14.3	55
29	Trehalose causes low-grade lysosomal stress to activate TFEB and the autophagy-lysosome biogenesis response. Autophagy, 2021, 17, 3740-3752.	9.1	54
30	Monocyte Surface-Bound IL-15 Can Function as an Activating Receptor and Participate in Reverse Signaling. Journal of Immunology, 2004, 172, 4225-4234.	0.8	53
31	A CD103+ Conventional Dendritic Cell Surveillance System Prevents Development of Overt Heart Failure during Subclinical Viral Myocarditis. Immunity, 2017, 47, 974-989.e8.	14.3	50
32	Two populations of self-maintaining monocyte-independent macrophages exist in adult epididymis and testis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	49
33	Pseudomonas aeruginosa Exoenzyme S Induces Transcriptional Expression of Proinflammatory Cytokines and Chemokines. Infection and Immunity, 2000, 68, 4811-4814.	2.2	44
34	Conventional Dendritic Cells Impair Recovery after Myocardial Infarction. Journal of Immunology, 2018, 201, 1784-1798.	0.8	43
35	Exploring cardiac macrophage heterogeneity in the healthy and diseased myocardium. Current Opinion in Immunology, 2021, 68, 54-63.	5.5	38
36	Therapeutic targeting of innate immunity in the failing heart. Journal of Molecular and Cellular Cardiology, 2011, 51, 594-599.	1.9	37

3

SLAVA EPELMAN

#	Article	IF	CITATIONS
37	Alternatively Activated Macrophages Drive Browning of White Adipose Tissue in Burns. Annals of Surgery, 2019, 269, 554-563.	4.2	29
38	Machine Learning Compared With Conventional Statistical Models for Predicting Myocardial Infarction Readmission and Mortality: A Systematic Review. Canadian Journal of Cardiology, 2021, 37, 1207-1214.	1.7	29
39	Dynamic CD4+ T cell heterogeneity defines subset-specific suppression and PD-L1-blockade-driven functional restoration in chronic infection. Nature Immunology, 2021, 22, 1524-1537.	14.5	26
40	Eptifibatide-induced thrombocytopenia and thrombosis. Journal of Thrombosis and Thrombolysis, 2006, 22, 151-154.	2.1	25
41	Communication in the Heart: the Role of the Innate Immune System in Coordinating Cellular Responses to Ischemic Injury. Journal of Cardiovascular Translational Research, 2012, 5, 827-836.	2.4	25
42	Increasing Serum Soluble Angiotensin-Converting Enzyme 2 Activity After Intensive Medical Therapy Is Associated With Better Prognosis in Acute Decompensated Heart Failure. Journal of Cardiac Failure, 2013, 19, 605-610.	1.7	25
43	Peripheral monocyte–derived cells counter amyloid plaque pathogenesis in a mouse model of Alzheimer's disease. Journal of Clinical Investigation, 2022, 132, .	8.2	25
44	Interrupting reactivation of immunologic memory diverts the allergic response and prevents anaphylaxis. Journal of Allergy and Clinical Immunology, 2021, 147, 1381-1392.	2.9	21
45	Using High-Dimensional Approaches to Probe Monocytes and Macrophages in Cardiovascular Disease. Frontiers in Immunology, 2019, 10, 2146.	4.8	17
46	Medical mitigation strategies for acute radiation exposure during spaceflight. Aviation, Space, and Environmental Medicine, 2006, 77, 130-9.	0.5	13
47	Macrophage Immunomodulation Through New Polymers that Recapitulate Functional Effects of Itaconate as a Power House of Innate Immunity. Advanced Functional Materials, 2021, 31, 2003341.	14.9	12
48	Radiation Impacts Early Atherosclerosis by Suppressing Intimal LDL Accumulation. Circulation Research, 2021, 128, 530-543.	4.5	12
49	Microbial Products Activate Monocytic Cells through Detergent-Resistant Membrane Microdomains. American Journal of Respiratory Cell and Molecular Biology, 2008, 39, 657-665.	2.9	11
50	Distinct fates of monocytes and T cells directly activated by Pseudomonas aeruginosa exoenzyme S. Journal of Leukocyte Biology, 2002, 71, 458-68.	3.3	10
51	Isolation and Identification of Extravascular Immune Cells of the Heart. Journal of Visualized Experiments, 2018, , .	0.3	9
52	Monocyte-Derived Macrophages: The Missing Link in Organ Transplantation. Immunity, 2018, 49, 783-785.	14.3	7
53	Enterococcal Endocarditis Presenting as an Isolated Aortic Valve Aneurysm: Case Report and Review of Literature. Journal of the American Society of Echocardiography, 2008, 21, 1391.e5-1391.e6.	2.8	6
54	A cardioimmunologist's toolkit: genetic tools to dissect immune cells in cardiac disease. Nature Reviews Cardiology, 2022, 19, 395-413.	13.7	6

SLAVA EPELMAN

#	Article	IF	CITATIONS
55	Diversity in the Expressed Genomic Host Response to Myocardial Infarction. Circulation Research, 2022, 131, 106-108.	4.5	6
56	Membrane CD14, but not soluble CD14, is used by exoenzyme S from <i>P. aeruginosa</i> to signal proinflammatory cytokine production. Journal of Leukocyte Biology, 2011, 90, 189-198.	3.3	5
57	Cardiac Macrophages, Reactive Oxygen Species, and Development of LeftÂVentricular Dysfunction. JACC Basic To Translational Science, 2017, 2, 699-701.	4.1	3
58	Endocannabinoid signalling: bone marrow monocytes and neutrophils follow their nose into ischaemic tissue. Cardiovascular Research, 2019, 115, 482-484.	3.8	2
59	H2S—The Newest Gaseous Messenger on the Block. Journal of Cardiac Failure, 2012, 18, 597-599.	1.7	1
60	Next-Generation Approaches to Predicting the Need for Heart Failure Hospitalization. Canadian Journal of Cardiology, 2019, 35, 379-381.	1.7	1
61	Tissue-Reparative Benefits of MST1/2 Inhibition: Separating the Wheat From the Chaff. Circulation Research, 2021, 129, 927-929.	4.5	1
62	Rel-driven monocyte-derived macrophages push the pressured heart over the edge. Cardiovascular Research, 2022, 118, 1167-1169.	3.8	1
63	Antigen and Memory CD8 T Cells: Were They Both Right?. Allergy, Asthma and Clinical Immunology, 2007, 3, 37.	2.0	0
64	Cheolho Cheong (1974–2016). Cell Metabolism, 2016, 24, 187-188.	16.2	0
65	Microbes and genes in heart failure. Science, 2019, 366, 806-807.	12.6	0
66	Therapeutic Treatment Approaches Post–Myocardial Infarction. JACC Basic To Translational Science, 2019, 4, 921-923.	4.1	0
67	Antigen and Memory CD8 T Cells: Were They Both Right?. Allergy, Asthma and Clinical Immunology, 2007, 03, 37.	2.0	Ο