
Xinge Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8808062/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nasal absorption enhancement of insulin using PEG-grafted chitosan nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 68, 526-534.	4.3	169
2	Functional Silver Nanoparticle as a Benign Antimicrobial Agent That Eradicates Antibiotic-Resistant Bacteria and Promotes Wound Healing. ACS Applied Materials & Interfaces, 2016, 8, 25798-25807.	8.0	167
3	A Biomimetic Nonâ€Antibiotic Approach to Eradicate Drugâ€Resistant Infections. Advanced Materials, 2019, 31, e1806024.	21.0	131
4	Single Continuous Near-Infrared Laser-Triggered Photodynamic and Photothermal Ablation of Antibiotic-Resistant Bacteria Using Effective Targeted Copper Sulfide Nanoclusters. ACS Applied Materials & Interfaces, 2017, 9, 30470-30479.	8.0	128
5	Polymer-Ag Nanocomposites with Enhanced Antimicrobial Activity against Bacterial Infection. ACS Applied Materials & Interfaces, 2014, 6, 15813-15821.	8.0	124
6	Chitosanâ€NAC nanoparticles as a vehicle for nasal absorption enhancement of insulin. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 88B, 150-161.	3.4	121
7	Near-Infrared Light-Activated Thermosensitive Liposomes as Efficient Agents for Photothermal and Antibiotic Synergistic Therapy of Bacterial Biofilm. ACS Applied Materials & Interfaces, 2018, 10, 14426-14437.	8.0	121
8	Bioconjugated nanoparticles for attachment and penetration into pathogenic bacteria. Biomaterials, 2013, 34, 10328-10337.	11.4	105
9	Amphiphilic Random Glycopolymer Based on Phenylboronic Acid: Synthesis, Characterization, and Potential as Glucose-Sensitive Matrix. Biomacromolecules, 2009, 10, 1337-1345.	5.4	103
10	Hollow and degradable polyelectrolyte nanocapsules for protein drug delivery. Acta Biomaterialia, 2010, 6, 210-217.	8.3	79
11	An injectable and glucose-sensitive nanogel for controlled insulin release. Journal of Materials Chemistry, 2012, 22, 22788.	6.7	76
12	An Antifouling Hydrogel Containing Silver Nanoparticles for Modulating the Therapeutic Immune Response in Chronic Wound Healing. Langmuir, 2019, 35, 1837-1845.	3.5	75
13	A hydrotropic β-cyclodextrin grafted hyperbranched polyglycerol co-polymer for hydrophobic drug delivery. Acta Biomaterialia, 2011, 7, 585-592.	8.3	71
14	Phenylboronate-diol crosslinked glycopolymeric nanocarriers for insulin delivery at physiological pH. Soft Matter, 2014, 10, 911.	2.7	71
15	All-in-one NIR-activated nanoplatforms for enhanced bacterial biofilm eradication. Nanoscale, 2018, 10, 18520-18530.	5.6	69
16	Amphiphilic glycopolymer nanoparticles as vehicles for nasal delivery of peptides and proteins. European Journal of Pharmaceutical Sciences, 2013, 49, 474-482.	4.0	66
17	Block versus Random Amphiphilic Glycopolymer Nanopaticles as Glucose-Responsive Vehicles. Biomacromolecules, 2015, 16, 3345-3356.	5.4	65
18	pH- and glucose-sensitive glycopolymer nanoparticles based on phenylboronic acid for triggered release of insulin. Carbohydrate Polymers, 2012, 89, 124-131.	10.2	62

#	Article	IF	CITATIONS
19	Functional Silver Nanocomposites as Broad-Spectrum Antimicrobial and Biofilm-Disrupting Agents. ACS Applied Materials & Interfaces, 2017, 9, 16834-16847.	8.0	62
20	A pH Gated, Glucose-Sensitive Nanoparticle Based on Worm-Like Mesoporous Silica for Controlled Insulin Release. Journal of Physical Chemistry B, 2013, 117, 3852-3860.	2.6	58
21	In situ cross-linked polysaccharide hydrogel as extracellular matrix mimics for antibiotics delivery. Carbohydrate Polymers, 2014, 105, 63-69.	10.2	58
22	Ag-Conjugated graphene quantum dots with blue light-enhanced singlet oxygen generation for ternary-mode highly-efficient antimicrobial therapy. Journal of Materials Chemistry B, 2020, 8, 1371-1382.	5.8	56
23	Phenylboronic acid-containing block copolymers: synthesis, self-assembly, and application for intracellular delivery of proteins. New Journal of Chemistry, 2012, 36, 1413.	2.8	48
24	BODIPY-based macromolecular photosensitizer with cation-enhanced antibacterial activity. Polymer Chemistry, 2015, 6, 302-310.	3.9	47
25	Synthesis and physicochemical characterization of a novel amphiphilic polylactic acid-hyperbranched polyglycerol conjugate for protein delivery. Journal of Controlled Release, 2009, 140, 141-147.	9.9	44
26	Water-soluble BODIPY-conjugated glycopolymers as fluorescent probes for live cell imaging. Polymer Chemistry, 2013, 4, 5743.	3.9	44
27	Structure–Activity Relationship of Membrane-Targeting Cationic Ligands on a Silver Nanoparticle Surface in an Antibiotic-Resistant Antibacterial and Antibiofilm Activity Assay. ACS Applied Materials & Interfaces, 2017, 9, 13837-13848.	8.0	43
28	Cross-linked antifouling polysaccharide hydrogel coating as extracellular matrix mimics for wound healing. Journal of Materials Chemistry B, 2017, 5, 2989-2999.	5.8	43
29	Chitosan bearing pendant cyclodextrin as a carrier for controlled protein release. Carbohydrate Polymers, 2009, 77, 394-401.	10.2	42
30	Oral glucose- and pH-sensitive nanocarriers for simulating insulin release in vivo. Polymer Chemistry, 2014, 5, 1999-2009.	3.9	42
31	Glucose- and temperature-responsive core–shell microgels for controlled insulin release. RSC Advances, 2012, 2, 9904.	3.6	41
32	Oxygen Self-Supplying Nanotherapeutic for Mitigation of Tissue Hypoxia and Enhanced Photodynamic Therapy of Bacterial Keratitis. ACS Applied Materials & Interfaces, 2021, 13, 33790-33801.	8.0	40
33	Glycopolymer micelles with reducible ionic cores for hepatocytes-targeting delivery of DOX. International Journal of Pharmaceutics, 2013, 441, 170-180.	5.2	39
34	A Water-Soluble Galactose-Decorated Cationic Photodynamic Therapy Agent Based on BODIPY to Selectively Eliminate Biofilm. Biomacromolecules, 2018, 19, 141-149.	5.4	39
35	Glycopolymer modified magnetic mesoporous silica nanoparticles for MR imaging and targeted drug delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482, 98-108.	4.7	36
36	A glucose-sensitive block glycopolymer hydrogel based on dynamic boronic ester bonds for insulin delivery. Carbohydrate Research, 2017, 445, 32-39.	2.3	35

#	Article	IF	CITATIONS
37	Bioinspired Heteromultivalent Ligand-Decorated Nanotherapeutic for Enhanced Photothermal and Photodynamic Therapy of Antibiotic-Resistant Bacterial Pneumonia. ACS Applied Materials & Interfaces, 2019, 11, 39648-39661.	8.0	35
38	β-Cyclodextrin grafting hyperbranched polyglycerols as carriers for nasal insulin delivery. Carbohydrate Polymers, 2011, 84, 1419-1425.	10.2	34
39	An Acid-Triggered Degradable and Fluorescent Nanoscale Drug Delivery System with Enhanced Cytotoxicity to Cancer Cells. Biomacromolecules, 2015, 16, 2444-2454.	5.4	34
40	Synthesis and pH/sugar/salt-sensitivity study of boronate crosslinked glycopolymer nanoparticles. New Journal of Chemistry, 2013, 37, 796.	2.8	33
41	Development of novel self-assembled poly(3-acrylamidophenylboronic) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf of insulin. Soft Matter, 2012, 8, 765-773.	50 587 T 2.7	d (acid)/pol 30
42	Phenylboronic acid-functionalized glycopolymeric nanoparticles for biomacromolecules delivery across nasal respiratory. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 82, 76-84.	4.3	30
43	Glycomimetic-Conjugated Photosensitizer for Specific <i>Pseudomonas aeruginosa</i> Recognition and Targeted Photodynamic Therapy. Bioconjugate Chemistry, 2018, 29, 3222-3230.	3.6	29
44	Glucosamine-carrying temperature- and pH-sensitive microgels: Preparation, characterization, and in vitro drug release studies. Journal of Colloid and Interface Science, 2008, 322, 333-341.	9.4	28
45	Glucose-sensitive polyelectrolyte nanocapsules based on layer-by-layer technique for protein drug delivery. Journal of Materials Science: Materials in Medicine, 2014, 25, 121-129.	3.6	28
46	Multivalent polymer–Au nanocomposites with cationic surfaces displaying enhanced antimicrobial activity. Polymer Chemistry, 2014, 5, 3038-3044.	3.9	28
47	Polymeric PD-L1 blockade nanoparticles for cancer photothermal-immunotherapy. Biomaterials, 2022, 280, 121312.	11.4	28
48	Composite copolymer hybrid silver nanoparticles: preparation and characterization of antibacterial activity and cytotoxicity. Polymer Chemistry, 2015, 6, 772-779.	3.9	25
49	Polysaccharides-based polyelectrolyte nanoparticles as protein drugs delivery system. Journal of Nanoparticle Research, 2011, 13, 3657-3670.	1.9	24
50	Hydrotropic Polymeric Mixed Micelles Based on Functional Hyperbranched Polyglycerol Copolymers as Hepatoma-Targeting Drug Delivery System. Journal of Pharmaceutical Sciences, 2013, 102, 145-153.	3.3	23
51	Synthetic Fluorescent Nanoplatform Based on Benzoxaborole for Broad-Spectrum Inhibition of Bacterial Adhesion to Host Cells. Chemistry of Materials, 2018, 30, 8795-8803.	6.7	20
52	Boronate ester bond-based core–shell nanocarriers with pH response for anticancer drug delivery. RSC Advances, 2014, 4, 20208-20215.	3.6	19
53	Antibacterial amphiphiles based on Îμ-polylysine: synthesis, mechanism of action, and cytotoxicity. RSC Advances, 2015, 5, 69325-69333.	3.6	19
54	A fluorescent nanobiocide based on ROS generation for eliminating pathogenic and multidrug-resistant bacteria. Journal of Materials Chemistry B, 2021, 9, 3689-3695.	5.8	18

#	Article	IF	CITATIONS
55	A bioinspired hierarchical nanoplatform targeting and responding to intracellular pathogens to eradicate parasitic infections. Biomaterials, 2022, 280, 121309.	11.4	18
56	BODIPY-based macromolecular photosensitizer with selective recognition and enhanced anticancer efficiency. RSC Advances, 2014, 4, 19495.	3.6	17
57	In situ real-time tracing of hierarchical targeting nanostructures in drug resistant tumors using diffuse fluorescence tomography. Chemical Science, 2019, 10, 7878-7886.	7.4	17
58	Disulfide cross-linked biodegradable polyelectrolyte nanoparticles for the oral delivery of protein drugs. New Journal of Chemistry, 2009, 33, 1882.	2.8	16
59	Internalization Mechanism of Phenylboronic-Acid-Decorated Nanoplatform for Enhanced Nasal Insulin Delivery. ACS Applied Bio Materials, 2020, 3, 2132-2139.	4.6	16
60	NIR-activated nanosystems with self-modulated bacteria targeting for enhanced biofilm eradication and caries prevention. Bioactive Materials, 2022, 13, 269-285.	15.6	16
61	Synergy between Clinical Microenvironment Targeted Nanoplatform and Near-Infrared Light Irradiation for Managing <i>Pseudomonas aeruginosa</i> Infections. ACS Applied Materials & Interfaces, 2021, 13, 38979-38989.	8.0	15
62	ROS-scavenging glyco-nanoplatform for synergistic antibacterial and wound-healing therapy of bacterial keratitis. Journal of Materials Chemistry B, 2022, 10, 4575-4587.	5.8	15
63	Delivery of protein drugs using nanoparticles self-assembled from dextran sulfate and quaternized chitosan. Journal of Controlled Release, 2011, 152, e170-e172.	9.9	14
64	Therapeutic nanoplatforms with bacteria-specific activation for directional transport of antibiotics. Chemical Communications, 2018, 54, 12754-12757.	4.1	14
65	A Targeted Photosensitizer Mediated by Visible Light for Efficient Therapy of Bacterial Keratitis. Biomacromolecules, 2021, 22, 3704-3717.	5.4	14
66	Hierarchical design of a polymeric nanovehicle for efficient tumor regression and imaging. Nanoscale, 2016, 8, 9318-9327.	5.6	13
67	Encapsulation of BSA in polylactic acid–hyperbranched polyglycerol conjugate nanoparticles: preparation, characterization, and release kinetics. Polymer Bulletin, 2010, 65, 787-805.	3.3	12
68	Epithelium-Penetrable Nanoplatform with Enhanced Antibiotic Internalization for Management of Bacterial Keratitis. Biomacromolecules, 2021, 22, 2020-2032.	5.4	12
69	A Nanoscale Polymeric Penetration Enhancer Based on Polylysine for Topical Delivery of Proteins and Peptides. Journal of Pharmaceutical Sciences, 2016, 105, 3585-3593.	3.3	11
70	Bioadhesive glycosylated nanoformulations for extended trans-corneal drug delivery to suppress corneal neovascularization. Journal of Materials Chemistry B, 2021, 9, 4190-4200.	5.8	11
71	A biodegradable and fluorescent nanovehicle with enhanced selective uptake by tumor cells. Polymer Chemistry, 2015, 6, 6529-6542.	3.9	10
72	The supramolecular hydrogel based on hyperbranched polyglycerol and dextran as a scaffold for living cells and drug delivery. RSC Advances, 2015, 5, 86730-86739.	3.6	10

#	Article	IF	CITATIONS
73	Synthesized of glucose-responsive nanogels labeled with fluorescence molecule based on phenylboronic acid by RAFT polymerization. Journal of Biomaterials Science, Polymer Edition, 2019, 30, 815-831.	3.5	10
74	Photosensitizer–AgNP composite with an ability to selectively recognize pathogen and enhanced photodynamic efficiency. New Journal of Chemistry, 2017, 41, 12371-12374.	2.8	8
75	Thiazolium-derivative functionalized silver nanocomposites for suppressing bacterial resistance and eradicating biofilms. New Journal of Chemistry, 2018, 42, 1316-1325.	2.8	8
76	Protonation–Activity Relationship of Bioinspired Ionizable Glycomimetics for the Growth Inhibition of Bacteria. ACS Applied Bio Materials, 2020, 3, 3868-3879.	4.6	8
77	Photoactive Silver Nanoagents for Backgroundless Monitoring and Precision Killing of Multidrug-Resistant Bacteria. Nanotheranostics, 2021, 5, 472-487.	5.2	8
78	A multi-targeted nanoconjugate for light-driven therapy of chronic wounds. Chemical Engineering Journal, 2021, 414, 128835.	12.7	8
79	Sulfhydryl functionalized graphene oxide for efficient preconcentration and photoablation of pathogenic bacteria. New Journal of Chemistry, 2019, 43, 917-925.	2.8	7
80	Synthesis of amphiphilic A ₄ B ₄ star-shaped copolymers by mechanisms transformation combining with thiol-ene reaction. Journal of Polymer Science Part A, 2013, 51, 4572-4583.	2.3	6
81	A bio-inspired injectable hydrogel as a cell platform for real-time glycaemic regulation. Journal of Materials Chemistry B, 2020, 8, 4627-4641.	5.8	6
82	Nonabsorbable polysaccharide-functionalized polyethylenimine for inhibiting lipid absorption. Carbohydrate Polymers, 2018, 197, 57-65.	10.2	5
83	Peptide-Conjugated CuS Nanocomposites for NIR-Triggered Ablation of <i>Pseudomonas aeruginosa</i> Biofilm. ACS Applied Bio Materials, 2019, 2, 1614-1622.	4.6	4
84	New glycoconjugate polyacrylamide with water-solubility and additional activated groups: synthesis and characterization. Journal of Polymer Research, 2009, 16, 311-316.	2.4	3
85	An on-demand nanoplatform for enhanced elimination of drug-resistant bacteria. Biomaterials Science, 2020, 8, 6912-6919.	5.4	3
86	A Bioadhesive Nanoplatform Enhances the Permeation of Drugs Used to Treat Diabetic Macular Edema. ACS Applied Bio Materials, 2020, 3, 2314-2324.	4.6	3
87	Glycosylated Nanotherapeutics with β-Lactamase Reversible Competitive Inhibitory Activity Reinvigorates Antibiotics against Gram-Negative Bacteria. Biomacromolecules, 2021, 22, 2834-2849.	5.4	3
88	A Spectrum Correction Method Based on Optimizing Turbulence Intensity. Applied Sciences (Switzerland), 2022, 12, 66.	2.5	3
89	Virus-like-inspired nanoparticles facilitate bacterial internalization for enhanced eradication of drug-resistant pathogens. New Journal of Chemistry, 2022, 46, 14410-14420.	2.8	3
90	Toxicity of polymerâ€modified CuS nanoclusters on zebrafish embryo development. Journal of Applied Toxicology, 2022, 42, 295-304.	2.8	2

#	Article	IF	CITATIONS
91	A light-activated nanotherapeutic with broad-spectrum bacterial recognition to eliminate drug-resistant pathogens. Journal of Materials Chemistry B, 2021, 9, 1364-1369.	5.8	1
92	A cell membrane repair protein-based nanoformulation with multiple actuators for scarless wound healing. Journal of Materials Chemistry B, 0, , .	5.8	1