
Daniel C Stein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8807300/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Research, 2003, 31, 1805-1812.	14.5	634
2	Effect of Spectinomycin Use on the Prevalence of Spectinomycin-Resistant and of Penicillinase-Producing <i>Neisseria Gonorrhoeae</i> . New England Journal of Medicine, 1987, 317, 272-278.	27.0	144
3	Genetic basis of Neisseria gonorrhoeae lipooligosaccharide antigenic variation. Journal of Bacteriology, 1995, 177, 7275-7279.	2.2	99
4	ldentification of the gene (lgtG) encoding the lipooligosaccharide chain synthesizing glucosyl transferase from Neisseria gonorrhoeae. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 10872-10877.	7.1	99
5	Characterization of a gyrB mutation responsible for low-level nalidixic acid resistance in Neisseria gonorrhoeae. Antimicrobial Agents and Chemotherapy, 1991, 35, 622-626.	3.2	97
6	Neisserial Lipooligosaccharide Is a Target for Complement Component C4b. Journal of Biological Chemistry, 2003, 278, 50853-50862.	3.4	82
7	Role of Lipooligosaccharide in Opa-Independent Invasion of Neisseria gonorrhoeae into Human Epithelial Cells. Journal of Experimental Medicine, 2000, 191, 949-960.	8.5	75
8	Antigenic variation in Neisseria gonorrhoeae: production of multiple lipooligosaccharides. Journal of Bacteriology, 1997, 179, 982-986.	2.2	70
9	Use of a non-selective transformation technique to construct a multiply restriction/modification-deficient mutant ofNeisseria gonorrhoeae. Molecular Genetics and Genomics, 1996, 251, 509-517.	2.4	65
10	Restriction and modification systems of neisseria gonorrhoeae. Gene, 1995, 157, 19-22.	2.2	59
11	Transformation of Neisseria gonorrhoeae: physical requirements of the transforming DNA. Canadian Journal of Microbiology, 1991, 37, 345-349.	1.7	54
12	Restriction of plasmid DNA during transformation but not conjugation in Neisseria gonorrhoeae. Infection and Immunity, 1988, 56, 112-116.	2.2	52
13	Construction and characterization of a new shuttle vector, pLES2, capable of functioning in Escherichia coli and Neisseria gonorrhoeae. Gene, 1983, 25, 241-247.	2.2	50
14	Neisseria gonorrhoeaebreaches the apical junction of polarized epithelial cells for transmigration by activating EGFR. Cellular Microbiology, 2013, 15, 1042-1057.	2.1	49
15	Lack of Lipid A Pyrophosphorylation and Functional <i>lptA</i> Reduces Inflammation by Neisseria Commensals. Infection and Immunity, 2012, 80, 4014-4026.	2.2	48
16	Characterization of Bacillus subtilis DSM704 and its production of 1-deoxynojirimycin. Applied and Environmental Microbiology, 1984, 48, 280-284.	3.1	48
17	Importance of lipooligosaccharide structure in determining gonococcal resistance to hydrophobic antimicrobial agents resulting from the mtr efflux system. Molecular Microbiology, 1995, 16, 1001-1009.	2.5	47
18	Assessing Student Understanding of Host Pathogen Interactions Using a Concept Inventory. Journal of Microbiology and Biology Education, 2009, 10, 43-50.	1.0	47

#	Article	lF	CITATIONS
19	Characterization of melA: a gene encoding melanin biosynthesis from the marine bacterium Shewanella colwelliana. Gene, 1991, 109, 131-136.	2.2	46
20	A Model for Using a Concept Inventory as a Tool for Students' Assessment and Faculty Professional Development. CBE Life Sciences Education, 2010, 9, 408-416.	2.3	44
21	Characterization of the dsDNA prophage sequences in the genome of Neisseria gonorrhoeae and visualization of productive bacteriophage. BMC Microbiology, 2007, 7, 66.	3.3	43
22	Neisseria gonorrhoeae infects the human endocervix by activating non-muscle myosin II-mediated epithelial exfoliation. PLoS Pathogens, 2017, 13, e1006269.	4.7	40
23	The Hae IV restriction modification system of Haemophilus aegyptius is encoded by a single polypeptide 1 1Edited by M. Gottesman. Journal of Molecular Biology, 1999, 293, 1055-1065.	4.2	39
24	A Faculty Team Works to Create Content Linkages among Various Courses to Increase Meaningful Learning of Targeted Concepts of Microbiology. CBE Life Sciences Education, 2007, 6, 155-162.	2.3	37
25	Expression of Opacity Proteins Interferes with the Transmigration of Neisseria gonorrhoeae across Polarized Epithelial Cells. PLoS ONE, 2015, 10, e0134342.	2.5	37
26	A new method for the rapid identification of genes encoding restriction and modification enzymes. Nucleic Acids Research, 1991, 19, 1831-1835.	14.5	34
27	Characterization of a chimeric β-lactamase plasmid of Neisseria gonorrhoeae which can function in Escherichia coli. Molecular Genetics and Genomics, 1983, 189, 77-84.	2.4	31
28	Use of transformation to construct Neisseria gonorrhoeae strains with altered lipooligosaccharides. Infection and Immunity, 1988, 56, 762-765.	2.2	29
29	Analysis of the lsi region involved in lipooligosaccharide biosynthesis in Neisseria gonorrhoeae. Journal of Bacteriology, 1991, 173, 7896-7902.	2.2	27
30	Neisseria gonorrhoeae-induced transactivation of EGFR enhances gonococcal invasion. Cellular Microbiology, 2011, 13, 1078-1090.	2.1	27
31	nagZ Triggers Gonococcal Biofilm Disassembly. Scientific Reports, 2016, 6, 22372.	3.3	27
32	Construction and Characterization of a Derivative of Neisseria gonorrhoeae Strain MS11 Devoid of All <i>opa</i> Genes. Journal of Bacteriology, 2012, 194, 6468-6478.	2.2	26
33	Purification and characterization of DNA methyltransferases fromNeisseria gonorrhoeae. Nucleic Acids Research, 1988, 16, 5957-5972.	14.5	25
34	Role of phosphoglucomutase in lipooligosaccharide biosynthesis in Neisseria gonorrhoeae. Journal of Bacteriology, 1994, 176, 2930-2937.	2.2	25
35	A mutation in the Neisseria gonorrhoeae rfaD homolog results in altered lipooligosaccharide expression. Journal of Bacteriology, 1995, 177, 2321-2327.	2.2	25
36	Synthesis, Characterization, and Application of Antibody Functionalized Fluorescent Silica Nanoparticles. Advanced Functional Materials, 2013, 23, 3335-3343.	14.9	25

#	Article	IF	CITATIONS
37	Effect of gonococcal lipooligosaccharide variation on human monocytic cytokine profile. BMC Microbiology, 2007, 7, 7.	3.3	24
38	Plasmids with easily excisable xylE cassettes. Gene, 1992, 117, 157-158.	2.2	23
39	Cloning genes for proline biosynthesis from Neisseria gonorrhoeae: identification by interspecific complementation of Escherichia coli mutants. Journal of Bacteriology, 1984, 158, 696-700.	2.2	23
40	Construction of a Neisseria gonorrhoeae MS11 derivative deficient in NgoMI restriction and modification. Journal of Bacteriology, 1992, 174, 4899-4906.	2.2	22
41	Neisseria gonorrhoeae Filamentous Phage NgoÂ6 Is Capable of Infecting a Variety of Gram-Negative Bacteria. Journal of Virology, 2014, 88, 1002-1010.	3.4	22
42	Novel Catanionic Surfactant Vesicle Vaccines Protect against Francisella tularensis LVS and Confer Significant Partial Protection against F. tularensis Schu S4 Strain. Vaccine Journal, 2014, 21, 212-226.	3.1	22
43	Molecular analysis of lipooligosaccharide biosynthesis in Neisseria gonorrhoeae. Infection and Immunity, 1989, 57, 2847-2852.	2.2	21
44	Interaction with lectins and differential wheat germ agglutinin binding of pyocin 103-sensitive and -resistant Neisseria gonorrhoeae. Journal of Bacteriology, 1981, 148, 796-803.	2.2	21
45	Genetic basis of pyocin resistance in Neisseria gonorrhoeae. Journal of Bacteriology, 1994, 176, 6869-6876.	2.2	20
46	Analysis of Lipooligosaccharide Biosynthesis in the Neisseriaceae. Journal of Bacteriology, 2001, 183, 934-941.	2.2	20
47	Neisseria gonorrhoeaestrain PID2 simultaneously expresses six chemically related lipooligosaccharide structures. Glycobiology, 2002, 12, 523-533.	2.5	20
48	Analysis of type I restriction modification systems in the Neisseriaceae: genetic organization and properties of the gene products. Molecular Microbiology, 2008, 41, 1199-1210.	2.5	20
49	Cloning of a gonococcal DNA sequence that complements the lipooligosaccharide defects of Neisseria gonorrhoeae 1291d and 1291e. Infection and Immunity, 1993, 61, 3360-3368.	2.2	19
50	Cloning and linkage analysis of Neisseria gonorrhoeae DNA methyltransferases. Journal of Bacteriology, 1992, 174, 5654-5660.	2.2	18
51	The Neisseria gonorrhoeae S.NgoVIII restriction/modification system: a type IIs system homologous to the Haemophilus parahaemolyticus HphI restriction/modification system. Nucleic Acids Research, 1997, 25, 4147-4152.	14.5	18
52	Neisseria gonorrhoeae infects the heterogeneous epithelia of the human cervix using distinct mechanisms. PLoS Pathogens, 2019, 15, e1008136.	4.7	18
53	Applications of Biotechnology to the Production, Recovery and Use of Marine Polysaccharides. Bio/technology, 1985, 3, 899-902.	1.5	17
54	Lipooligosaccharide Structures of Invasive and Carrier Isolates of Neisseria meningitidis Are Correlated with Pathogenicity and Carriage. Journal of Biological Chemistry, 2016, 291, 3224-3238.	3.4	17

#	Article	IF	CITATIONS
55	Biochemical Analysis of Lpt3, a Protein Responsible forPhosphoethanolamine Addition to Lipooligosaccharide ofPathogenic Neisseria. Journal of Bacteriology, 2006, 188, 1039-1048.	2.2	16
56	Cloning, complementation, and characterization of an rfaE homolog from Neisseria gonorrhoeae. Journal of Bacteriology, 1996, 178, 4571-4575.	2.2	15
57	Oral Immunization of Rabbits with S. enterica Typhimurium Expressing Neisseria gonorrhoeae Filamentous Phage Φ6 Induces Bactericidal Antibodies Against N. gonorrhoeae. Scientific Reports, 2016, 6, 22549.	3.3	15
58	Neisseria gonorrhoeae Aggregation Reduces Its Ceftriaxone Susceptibility. Antibiotics, 2018, 7, 48.	3.7	15
59	Sequence similarities between the genes encoding the S.Ngol and Haell restriction/modification systems. Biological Chemistry, 1998, 379, 575-8.	2.5	15
60	Isolation of temperature-sensitive McrA and McrB mutations and complementation analysis of the McrBC region of Escherichia coli K-12. Journal of Bacteriology, 1991, 173, 150-155.	2.2	14
61	Structural and Immunochemical Characterization of the Lipooligosaccharides Expressed by Neisseria subflava 44. Journal of Bacteriology, 2001, 183, 942-950.	2.2	14
62	TNF-α-Independent IL-8 Expression: Alterations in Bacterial Challenge Dose Cause Differential Human Monocytic Cytokine Response. Journal of Immunology, 2006, 177, 1314-1322.	0.8	14
63	Quantification of bacterial internalization by host cells using a β-lactamase reporter strain: Neisseria gonorrhoeae invasion into cervical epithelial cells requires bacterial viability. Microbes and Infection, 2008, 10, 1182-1191.	1.9	14
64	Innate immune response to lipooligosaccharide: pivotal regulator of the pathobiology of invasive Neisseria meningitidis infections. Pathogens and Disease, 2017, 75, .	2.0	13
65	Biochemical Properties of Neisseria gonorrhoeae LgtE. Journal of Bacteriology, 2002, 184, 6410-6416.	2.2	12
66	The lgtABCDE Gene Cluster, Involved in Lipooligosaccharide Biosynthesis in Neisseria gonorrhoeae , Contains Multiple Promoter Sequences. Journal of Bacteriology, 2004, 186, 1038-1049.	2.2	12
67	Structural Requirements for Monoclonal Antibody 2-1-L8 Recognition of Neisserial Lipooligosaccharides. Hybridoma, 2008, 27, 71-79.	0.4	11
68	Use of xylE fusions to demonstrate that lsi-1, a Neisseria gonorrhoeae lipooligosaccharide biosynthetic gene, and lsi-3 are not transcriptionally linked. Journal of Bacteriology, 1994, 176, 3428-3432.	2.2	10
69	Construction and Characterization of Chimeric β-Lactamase Piasmids of Neisseria gonorrhoeae with Altered Ability to Be Mobilized during Conjugation. Sexually Transmitted Diseases, 1985, 12, 76-82.	1.7	9
70	Identification of a new restriction endonuclease, R.NgoBI, fromNeisseria gonorrhoeae. Nucleic Acids Research, 1988, 16, 9868-9868.	14.5	9
71	Introduction of cloned genes into Neisseria gonorrhoeae. Clinical Microbiology Reviews, 1989, 2, S146-9.	13.6	9
72	Natural variation of the Ngoll restriction-modification system of Neisseria gonorrhoeae. Gene, 1993, 132, 15-20.	2.2	8

#	Article	IF	CITATIONS
73	Neisseria gonorrhoeae FA1090 Carries Genes Encoding Two Classes of Vsr Endonucleases. Journal of Bacteriology, 2010, 192, 3951-3960.	2.2	8
74	Using a Concept Inventory to Reveal Student Thinking Associated with Common Misconceptions about Antibiotic Resistance. Journal of Microbiology and Biology Education, 2017, 18, .	1.0	8
75	Catanionic Surfactant Vesicles as a New Platform for Probing Glycan–Protein Interactions. Advanced Functional Materials, 2018, 28, 1706215.	14.9	7
76	Expression of closed restriction and modification genes, hjalRM from jannaschiana in Escherichia coli. Gene, 1990, 89, 129-132.	2.2	6
77	Structural heterogeneity of the lipopolysaccharides of the Neisseriaceae. FEMS Microbiology Letters, 1991, 90, 69-72.	1.8	6
78	Purification and characterization of a new DNA methyltransferase from neisseria gonorrhoeae. Gene, 1995, 157, 101-102.	2.2	6
79	Sequence-Based Predictions of Lipooligosaccharide Diversity in the Neisseriaceae and Their Implication in Pathogenicity. PLoS ONE, 2011, 6, e18923.	2.5	6
80	Role of restriction and modification on genetic exchange in Neisseria gonorrhoeae. , 1988, , 323-327.		6
81	Inhibition of Active Transport and Macromolecular Synthesis by Pyocin 103 in Neisseria gonorrhoeae. Sexually Transmitted Diseases, 1983, 10, 7-13.	1.7	5
82	Association of host proteins with the broad host range filamentous phage Ngol̂¦6 of Neisseria gonorrhoeae. PLoS ONE, 2020, 15, e0240579.	2.5	5
83	Use of a non-selective transformation technique to construct a multiply Restriction/Modification-deficient mutant of. Molecular Genetics and Genomics, 1996, 251, 509.	2.4	5
84	Effect of environment on sensitivity of Neisseria gonorrhoeae to Pseudomonas aeruginosa bacteriocins. Infection and Immunity, 1980, 29, 507-511.	2.2	5
85	Neisseria gonorrhoeae M·NgoAI DNA methyltransferase: physical and catalytic properties of the homogeneous enzyme. Gene, 1988, 74, 93-97.	2.2	4
86	Construction of a temperature-sensitive mutation for the direct identification of plasmids encoding DNA methyltransferases. Gene, 1988, 74, 233-235.	2.2	4
87	Use of nfsB, encoding nitroreductase, as a reporter gene to determine the mutational spectrum of spontaneous mutations in Neisseria gonorrhoeae. BMC Microbiology, 2009, 9, 239.	3.3	4
88	Cleavage of DNA byHaell is inhibited by the presence of 5-methylcytosine at the second cytosine within the recognition sequence. Nucleic Acids Research, 1989, 17, 10132-10132.	14.5	3
89	Structural Characterization of an Oligosaccharide Made by Neisseria sicca. Journal of Bacteriology, 2009, 191, 3311-3320.	2.2	3
90	Immunofluorescence Analysis of Human Endocervical Tissue Explants Infected with Neisseria gonorrhoeae. Bio-protocol, 2018, 8, .	0.4	3

#	Article	IF	CITATIONS
91	The Neisseria. , 2006, , 602-647.		3
92	In Vitro Analysis of Matched Isolates from Localized and Disseminated Gonococcal Infections Suggests That Opa Expression Impacts Clinical Outcome. Pathogens, 2022, 11, 217.	2.8	3
93	Structural heterogeneity of the lipopolysaccharides of the Neisseriaceae. FEMS Microbiology Letters, 1991, 90, 69-72.	1.8	3
94	A New Vaccination Method Based on Phage Ngol̂¦6 and Its Phagemid Derivatives. Frontiers in Microbiology, 2022, 13, 793205.	3.5	3
95	Adaptation of Neisseria gonorrhoeae to the Female Reproductive Tract. Microbiology Insights, 2020, 13, 117863612094707.	2.0	2
96	Extraction of Membrane Components from Neisseria gonorrhoeae Using Catanionic Surfactant Vesicles: A New Approach for the Study of Bacterial Surface Molecules. Pharmaceutics, 2020, 12, 787.	4.5	2
97	Alteration of serum sensitivity in Neisseria gonorrhoeae strain DOV by transformation. , 1988, , 599-604.		1
98	Gonococcal invasion into epithelial cells depends on both cell polarity and ezrin. PLoS Pathogens, 2021, 17, e1009592.	4.7	1
99	Chapter 7 Principles of bacterial pathogenesis. Principles of Medical Biology, 1998, , 85-97.	0.1	0
100	Antigenic variation of microbial surface glycosylated molecules. , 2010, , 819-835.		0
101	Quantitative Examination of Antibiotic Susceptibility of Neisseria gonorrhoeae Aggregates Using ATP-utilization Commercial Assays and Live/Dead Staining. Journal of Visualized Experiments, 2019, , .	0.3	0
102	Introduction of cloned genes into Neisseria gonorrhoeae Clinical Microbiology Reviews, 1989, 2, S146-S149.	13.6	0