
Liliana Bernardino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8806339/publications.pdf

Version: 2024-02-01

LILIANA REDNADDINO

#	Article	lF	CITATIONS
1	Argonaute-2 protects the neurovascular unit from damage caused by systemic inflammation. Journal of Neuroinflammation, 2022, 19, 11.	7.2	7
2	Gold nanostructures: synthesis, properties, and neurological applications. Chemical Society Reviews, 2022, 51, 2601-2680.	38.1	43
3	MicroRNA-124-3p-enriched small extracellular vesicles as a therapeutic approach for Parkinson's disease. Molecular Therapy, 2022, 30, 3176-3192.	8.2	27
4	Histamine in the Crosstalk Between Innate Immune Cells and Neurons: Relevance for Brain Homeostasis and Disease. Current Topics in Behavioral Neurosciences, 2021, , 261-288.	1.7	4
5	New insights into the regulatory roles of microRNAs in adult neurogenesis. Current Opinion in Pharmacology, 2020, 50, 38-45.	3.5	16
6	Editorial: Dual Role of Microglia in Health and Disease: Pushing the Balance Towards Repair. Frontiers in Cellular Neuroscience, 2020, 14, 259.	3.7	2
7	Advances and challenges in retinoid delivery systems in regenerative and therapeutic medicine. Nature Communications, 2020, 11, 4265.	12.8	65
8	Nanotechnology for intracellular delivery and targeting. , 2020, , 683-696.		1
9	Characterization of a Parkinson's disease rat model using an upgraded paraquat exposure paradigm. European Journal of Neuroscience, 2020, 52, 3242-3255.	2.6	20
10	C-Terminal Binding Proteins Promote Neurogenesis and Oligodendrogenesis in the Subventricular Zone. Frontiers in Cell and Developmental Biology, 2020, 8, 584220.	3.7	1
11	Histamine modulates hippocampal inflammation and neurogenesis in adult mice. Scientific Reports, 2019, 9, 8384.	3.3	26
12	Neural Stem Cell-Based Therapeutic Approaches for Brain Repair. , 2019, , 241-252.		1
13	Intravenous administration of retinoic acid-loaded polymeric nanoparticles prevents ischemic injury in the immature brain. Neuroscience Letters, 2018, 673, 116-121.	2.1	16
14	Lipocalin-2 regulates adult neurogenesis and contextual discriminative behaviours. Molecular Psychiatry, 2018, 23, 1031-1039.	7.9	44
15	Challenging the great vascular wall: Can we envision a simple yet comprehensive therapy for stroke?. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e350-e354.	2.7	6
16	A nanoformulation for the preferential accumulation in adult neurogenic niches. Journal of Controlled Release, 2018, 284, 57-72.	9.9	30
17	MicroRNA-124-loaded nanoparticles increase survival and neuronal differentiation of neural stem cells in vitro but do not contribute to stroke outcome in vivo. PLoS ONE, 2018, 13, e0193609.	2.5	31
18	Determination of catecholamines and endogenous related compounds in rat brain tissue exploring their native fluorescence and liquid chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1049-1050, 51-59.	2.3	19

LILIANA BERNARDINO

#	Article	IF	CITATIONS
19	Vascular interâ€regulation of inflammation: molecular and cellular targets for <scp>CNS</scp> therapy. Journal of Neurochemistry, 2017, 140, 692-702.	3.9	9
20	Dual role of histamine on microglia-induced neurodegeneration. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 764-769.	3.8	38
21	Synthetic microparticles conjugated with VEGF165 improve the survival of endothelial progenitor cells via microRNA-17 inhibition. Nature Communications, 2017, 8, 747.	12.8	35
22	Impact of Neuroinflammation on Hippocampal Neurogenesis: Relevance to Aging and Alzheimer's Disease. Journal of Alzheimer's Disease, 2017, 60, S161-S168.	2.6	54
23	MicroRNA: Basic concepts and implications for regeneration and repair of neurodegenerative diseases. Biochemical Pharmacology, 2017, 141, 118-131.	4.4	55
24	Blue light potentiates neurogenesis induced by retinoic acid-loaded responsive nanoparticles. Acta Biomaterialia, 2017, 59, 293-302.	8.3	24
25	Microglia in Health and Disease: A Double-Edged Sword. Mediators of Inflammation, 2017, 2017, 1-2.	3.0	22
26	Anti-Inflammatory Strategy for M2 Microglial Polarization Using Retinoic Acid-Loaded Nanoparticles. Mediators of Inflammation, 2017, 2017, 1-11.	3.0	41
27	Heterocellular Contacts with Mouse Brain Endothelial Cells Via Laminin and α6β1 Integrin Sustain Subventricular Zone (SVZ) Stem/Progenitor Cells Properties. Frontiers in Cellular Neuroscience, 2016, 10, 284.	3.7	15
28	Histamine induces microglia activation and dopaminergic neuronal toxicity via H1 receptor activation. Journal of Neuroinflammation, 2016, 13, 137.	7.2	76
29	Retinoic acid-loaded polymeric nanoparticles enhance vascular regulation of neural stem cell survival and differentiation after ischaemia. Nanoscale, 2016, 8, 8126-8137.	5.6	39
30	Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases. Journal of Controlled Release, 2016, 235, 34-47.	9.9	1,018
31	Traceable microRNA-124 loaded nanoparticles as a new promising therapeutic tool for Parkinson's disease. Neurogenesis (Austin, Tex), 2016, 3, e1256855.	1.5	23
32	MicroRNA-124 loaded nanoparticles enhance brain repair in Parkinson's disease. Journal of Controlled Release, 2016, 235, 291-305.	9.9	144
33	Cellular response of the blood-brain barrier to injury: Potential biomarkers and therapeutic targets for brain regeneration. Neurobiology of Disease, 2016, 91, 262-273.	4.4	41
34	Nanomedicine Approaches to Modulate Neural Stem Cells in Brain Repair. Trends in Biotechnology, 2016, 34, 437-439.	9.3	28
35	Histaminergic Regulation of Blood–Brain Barrier Activity. Receptors, 2016, , 215-230.	0.2	1
36	Retinoic acid-loaded polymeric nanoparticles induce neuroprotection in a mouse model for Parkinson's disease. Frontiers in Aging Neuroscience, 2015, 7, 20.	3.4	67

Liliana Bernardino

#	Article	IF	CITATIONS
37	Dual role of microglia in health and disease: pushing the balance toward repair. Frontiers in Cellular Neuroscience, 2015, 9, 51.	3.7	16
38	Combined neuroprotective action of adenosine A1 and cannabinoid CB1 receptors against NMDA-induced excitotoxicity in the hippocampus. Neurochemistry International, 2015, 87, 106-109.	3.8	14
39	Modulation of subventricular zone oligodendrogenesis: a role for hemopressin?. Frontiers in Cellular Neuroscience, 2014, 8, 59.	3.7	22
40	Histamine: a new immunomodulatory player in the neuron-glia crosstalk. Frontiers in Cellular Neuroscience, 2014, 8, 120.	3.7	68
41	New insights into the role of histamine in subventricular zone-olfactory bulb neurogenesis. Frontiers in Neuroscience, 2014, 8, 142.	2.8	18
42	Histamine in the Neural and Cancer Stem Cell Niches. Stem Cells and Cancer Stem Cells, 2014, , 3-17.	0.1	2
43	Galanin Promotes Neuronal Differentiation in Murine Subventricular Zone Cell Cultures. Stem Cells and Development, 2013, 22, 1693-1708.	2.1	19
44	Oligodendrogenesis from neural stem cells: Perspectives for remyelinating strategies. International Journal of Developmental Neuroscience, 2013, 31, 692-700.	1.6	48
45	Novel Role of Neuropeptide Y in the Modulation of Microglia Activity. Advances in Neuroimmune Biology, 2013, 4, 167-176.	0.7	1
46	Activation of Type 1 Cannabinoid Receptor (CB1R) Promotes Neurogenesis in Murine Subventricular Zone Cell Cultures. PLoS ONE, 2013, 8, e63529.	2.5	67
47	Functional Identification of Neural Stem Cell-Derived Oligodendrocytes. Methods in Molecular Biology, 2012, 879, 165-178.	0.9	4
48	Polymeric Nanoparticles to Control the Differentiation of Neural Stem Cells in the Subventricular Zone of the Brain. ACS Nano, 2012, 6, 10463-10474.	14.6	85
49	Neuropeptide Y promotes neurogenesis and protection against methamphetamine-induced toxicity in mouse dentate gyrus-derived neurosphere cultures. Neuropharmacology, 2012, 62, 2413-2423.	4.1	42
50	Histamine modulates microglia function. Journal of Neuroinflammation, 2012, 9, 90.	7.2	95
51	Nanomedicine boosts neurogenesis: new strategies for brain repair. Integrative Biology (United) Tj ETQq1 1 0.784	314 rgBT 1.3	/Qyerlock 1(
52	Histamine Stimulates Neurogenesis in the Rodent Subventricular Zone. Stem Cells, 2012, 30, 773-784.	3.2	46
53	Controlling the Neuronal Differentiation of Stem Cells by the Intracellular Delivery of Retinoic Acid-Loaded Nanoparticles. ACS Nano, 2011, 5, 97-106.	14.6	87
54	Functional Evaluation of Neural Stem Cell Differentiation by Single Cell Calcium Imaging. Current Stem Cell Research and Therapy, 2011, 6, 288-296.	1.3	9

LILIANA BERNARDINO

#	Article	IF	CITATIONS
55	Neuropeptide Y inhibits interleukin- $1\hat{1}^2$ -induced phagocytosis by microglial cells. Journal of Neuroinflammation, 2011, 8, 169.	7.2	74
56	The Angiogenic Factor Angiopoietin-1 Is a Proneurogenic Peptide on Subventricular Zone Stem/Progenitor Cells. Journal of Neuroscience, 2010, 30, 4573-4584.	3.6	62
57	Functional Identification of Neural Stem Cell–Derived Oligodendrocytes by Means of Calcium Transients Elicited by Thrombin. Rejuvenation Research, 2010, 13, 27-37.	1.8	15
58	Tumor Necrosis Factor-α Modulates Survival, Proliferation, and Neuronal Differentiation in Neonatal Subventricular Zone Cell Cultures. Stem Cells, 2008, 26, 2361-2371.	3.2	198
59	Neuropeptide Y Promotes Neurogenesis in Murine Subventricular Zone. Stem Cells, 2008, 26, 1636-1645.	3.2	88
60	Inflammatory events in hippocampal slice cultures prime neuronal susceptibility to excitotoxic injury: a crucial role of P2X ₇ receptorâ€mediated ILâ€1β release. Journal of Neurochemistry, 2008, 106, 271-280.	3.9	78
61	Interaction between neuropeptide Y (NPY) and brainâ€derived neurotrophic factor in NPYâ€mediated neuroprotection against excitotoxicity: a role for microglia. European Journal of Neuroscience, 2008, 27, 2089-2102.	2.6	50
62	Response to Histamine Allows the Functional Identification of Neuronal Progenitors, Neurons, Astrocytes, and Immature Cells in Subventricular Zone Cell Cultures. Rejuvenation Research, 2008, 11, 187-200.	1.8	45
63	Absolute Threshold. , 2008, , 3-3.		Ο
64	Subventricular Zone Cells as a Tool for Brain Repair. , 2007, , 81-108.		3
65	Inflammation and Neuronal Susceptibility to Excitotoxic Cell Death. , 2007, , 3-35.		0
66	Inactivation of Caspase-1 in Rodent Brain: A Novel Anticonvulsive Strategy. Epilepsia, 2006, 47, 1160-1168.	5.1	159
67	Inflammation and Neurogenesis in Temporal Lobe Epilepsy. CNS and Neurological Disorders, 2005, 4, 349-360.	4.3	44
68	Modulator Effects of Interleukin-1Â and Tumor Necrosis Factor-Â on AMPA-Induced Excitotoxicity in Mouse Organotypic Hippocampal Slice Cultures. Journal of Neuroscience, 2005, 25, 6734-6744.	3.6	204