
Erwin MĤrtlbauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8804042/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. Microbiology (United Kingdom), 2005, 151, 183-197.	1.8	324
2	Identification and Partial Characterization of the Nonribosomal Peptide Synthetase Gene Responsible for Cereulide Production in Emetic Bacillus cereus. Applied and Environmental Microbiology, 2005, 71, 105-113.	3.1	249
3	Automated Microarray System for the Simultaneous Detection of Antibiotics in Milk. Analytical Chemistry, 2004, 76, 646-654.	6.5	242
4	Co-occurrence of Ochratoxin A and Citrinin in Cereals from Bulgarian Villages with a History of Balkan Endemic Nephropathy. Journal of Agricultural and Food Chemistry, 2000, 48, 2483-2488.	5.2	190
5	Determination of the toxic potential ofBacillus cereusisolates by quantitative enterotoxin analyses. FEMS Microbiology Letters, 2006, 257, 293-298.	1.8	124
6	The Food Poisoning Toxins of Bacillus cereus. Toxins, 2021, 13, 98.	3.4	124
7	From genome to toxicity: a combinatory approach highlights the complexity of enterotoxin production in Bacillus cereus. Frontiers in Microbiology, 2015, 6, 560.	3.5	96
8	A Biosurfactantâ€Inspired Heptapeptide with Improved Specificity to Kill MRSA. Angewandte Chemie - International Edition, 2017, 56, 1486-1490.	13.8	89
9	The Bacillus cereus Food Infection as Multifactorial Process. Toxins, 2020, 12, 701.	3.4	88
10	Immunochemical screening for antimicrobial drug residues in commercial honeyâ€. Analyst, The, 1998, 123, 2759-2762.	3.5	85
11	Identification and Characterization of a New Variant of Shiga Toxin 1 in Escherichia coli ONT:H19 of Bovine Origin. Journal of Clinical Microbiology, 2003, 41, 2106-2112.	3.9	84
12	Rapid methods for deoxynivalenol and other trichothecenes. Toxicology Letters, 2004, 153, 113-121.	0.8	84
13	Comparison of multiplex PCR, enzyme immunoassay and cell culture methods for the detection of enterotoxinogenic Bacillus cereus. Journal of Microbiological Methods, 2009, 78, 265-270.	1.6	84
14	A regenerable immunochip for the rapid determination of 13 different antibiotics in raw milk. Analyst, The, 2009, 134, 1433.	3.5	81
15	Production and Characterization of Antibodies against Each of the Three Subunits of the Bacillus cereus Nonhemolytic Enterotoxin Complex. Applied and Environmental Microbiology, 2005, 71, 8214-8220.	3.1	78
16	A multicomponent toxin from Bacillus cereus incites inflammation and shapes host outcome via the NLRP3 inflammasome. Nature Microbiology, 2019, 4, 362-374.	13.3	78
17	Immunoassay Methods for Paralytic Shellfish Poisoning Toxins. Journal of AOAC INTERNATIONAL, 2001, 84, 1649-1656.	1.5	77
18	Widespread Occurrence of Low Levels of Alternariol in Apple and Tomato Products, as Determined by Comparative Immunochemical Assessment using Monoclonal and Polyclonal Antibodies. Journal of Agricultural and Food Chemistry, 2011, 59, 6360-6368.	5.2	74

Erwin MÃ**r**tlbauer

#	Article	IF	CITATIONS
19	Bacillus cereus enterotoxins act as major virulence factors and exhibit distinct cytotoxicity to different human cell lines. Toxicon, 2014, 77, 49-57.	1.6	68
20	Detection of Bacillus cereus with enteropathogenic potential by multiplex real-time PCR based on SYBR green I. Molecular and Cellular Probes, 2010, 24, 124-130.	2.1	64
21	Probiotic Bacillus cereus Strains, a Potential Risk for Public Health in China. Frontiers in Microbiology, 2016, 7, 718.	3.5	63
22	Cytotoxicity of the <i>Bacillus cereus</i> Nhe Enterotoxin Requires Specific Binding Order of Its Three Exoprotein Components. Infection and Immunity, 2010, 78, 3813-3821.	2.2	62
23	Rapid Detection of Fumonisin B1 in Corn-Based Food by Competitive Direct Dipstick Enzyme Immunoassay/Enzyme-Linked Immunofiltration Assay with Integrated Negative Control Reaction. Journal of Agricultural and Food Chemistry, 1995, 43, 2548-2552.	5.2	60
24	Rapid and simultaneous detection of ricin, staphylococcal enterotoxin B and saxitoxin by chemiluminescence-based microarray immunoassay. Analyst, The, 2014, 139, 5885-5892.	3.5	60
25	Comparison of ELISA and HPLC for the Determination of Histamine in Cheese. Journal of Agricultural and Food Chemistry, 1999, 47, 1961-1964.	5.2	59
26	Immunochemical detection of antibiotics and sulfonamides. Analyst, The, 1994, 119, 2543-2548.	3.5	54
27	Bacillus cereus non-haemolytic enterotoxin activates the NLRP3 inflammasome. Nature Communications, 2020, 11, 760.	12.8	51
28	First survey on the natural occurrence of Fusarium mycotoxins in Bulgarian wheat. Mycopathologia, 1996, 136, 47-52.	3.1	49
29	Trichothecene-induced cytotoxicity on human cell lines. Mycotoxin Research, 2009, 25, 77-84.	2.3	49
30	Automated regenerable microarray-based immunoassay for rapid parallel quantification of mycotoxins in cereals. Analytical and Bioanalytical Chemistry, 2013, 405, 6405-6415.	3.7	49
31	Recent Developments in Antibody-Based Assays for the Detection of Bacterial Toxins. Toxins, 2014, 6, 1325-1348.	3.4	48
32	Direct enzyme-linked immunosorbent assays for the detection of the 8-ketotrichothecene mycotoxins deoxynivalenol, 3-acetyldeoxynivalenol, and 15-acetyldeoxynivalenol in buffer solutions. Journal of Agricultural and Food Chemistry, 1991, 39, 2091-2095.	5.2	47
33	A survey on the occurrence of mycotoxins in wheat and maize from western Romania. Mycopathologia, 1998, 143, 97-103.	3.1	45
34	Ochratoxin A in human blood serum – retrospective long-term data. Mycotoxin Research, 2009, 25, 175-186.	2.3	41
35	Occurrence of <i>Fusarium</i> T-2 and HT-2 toxins in oats from cultivar studies in Germany and degradation of the toxins during grain cleaning treatment and food processing. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2010, 27, 1253-1260.	2.3	41
36	Enzyme immunoassay for the detection of streptomycin and dihydrostreptomycin in milk. Food and Agricultural Immunology, 1993, 5, 67-73.	1.4	40

Erwin Mätlbauer

#	Article	IF	CITATIONS
37	Mycotoxins in horse feed. Mycotoxin Research, 2010, 26, 23-30.	2.3	40
38	Short communication: Streptococcus species isolated from mastitis milk samples in Germany and their resistance to antimicrobial agents. Journal of Dairy Science, 2012, 95, 6957-6962.	3.4	40
39	Complex Formation between NheB and NheC Is Necessary to Induce Cytotoxic Activity by the Three-Component Bacillus cereus Nhe Enterotoxin. PLoS ONE, 2013, 8, e63104.	2.5	38
40	The potential of monoclonal antibodies against ampicillin for the preparation of a multi-immunoaffinity chromatography for penicillinsâ€. Analyst, The, 1998, 123, 2749-2754.	3.5	37
41	Detection of IgM and IgG Against Hepatitis E Virus in Serum and Meat Juice Samples from Pigs at Slaughter in Bavaria, Germany. Foodborne Pathogens and Disease, 2012, 9, 655-660.	1.8	37
42	Detection of aflatoxins, trichothecenes, ochratoxin a and zearalenone by test strip enzyme immunoassay: A rapid method for screening cereals for mycotoxins. Food and Agricultural Immunology, 1991, 3, 185-193.	1.4	36
43	Identification of cereulide producing Bacillus cereus by MALDI-TOF MS. Food Microbiology, 2019, 82, 75-81.	4.2	36
44	Antimicrobial Susceptibility and Distribution of β-Lactamase A (<i>blaA</i>) and β-Lactamase B (<i>blaB</i>) Genes in Enteropathogenic <i>Yersinia</i> Species. Microbial Drug Resistance, 2011, 17, 575-581.	2.0	34
45	Immunochemical rapid test for multiresidue analysis of antimicrobial drugs in milk using monoclonal antibodies and hapten–glucose oxidase conjugates. Analytica Chimica Acta, 2003, 495, 11-19.	5.4	33
46	Improved enzyme immunoassay for group-specific determination of penicillins in milk. Food and Agricultural Immunology, 2003, 15, 135-143.	1.4	33
47	Performance characteristics of the Duopath® Cereus Enterotoxins assay for rapid detection of enterotoxinogenic Bacillus cereus strains. International Journal of Food Microbiology, 2010, 144, 322-326.	4.7	33
48	Characterization of <i>Bacillus cereus</i> isolates from local dairy farms in China. FEMS Microbiology Letters, 2016, 363, fnw096.	1.8	33
49	An immunochemical test for rapid screening of zearalenone and T-2 toxin. Analytical and Bioanalytical Chemistry, 2010, 397, 55-62.	3.7	31
50	Use of 3-(4-hydroxyphenyl)propionic acid as electron donating compound in a potentiometric aflatoxin M1-immunosensor. Analytica Chimica Acta, 2010, 661, 122-127.	5.4	31
51	Simulating Intestinal Growth Conditions Enhances Toxin Production of Enteropathogenic Bacillus cereus. Frontiers in Microbiology, 2017, 8, 627.	3.5	31
52	Degradation of scrapie associated prion protein (PrPSc) by the gastrointestinal microbiota of cattle. Veterinary Research, 2006, 37, 695-703.	3.0	31
53	Infectivity of Scrapie Prion Protein (PrPSc) FollowingInÂvitroDigestion with Bovine Gastrointestinal Microbiota. Zoonoses and Public Health, 2007, 54, 185-190.	2.2	30
54	Consumed Foodstuffs Have a Crucial Impact on the Toxic Activity of Enteropathogenic Bacillus cereus. Frontiers in Microbiology, 2018, 9, 1946.	3.5	30

#	Article	IF	CITATIONS
55	Assessing the toxic potential of enteropathogenic Bacillus cereus. Food Microbiology, 2019, 84, 103276.	4.2	29
56	Multifaceted toxin profile, an approach toward a better understanding of probiotic <i>Bacillus cereus</i> . Critical Reviews in Toxicology, 2019, 49, 342-356.	3.9	29
57	Enzyme immunoassays for the detection of sulfamethazine, sulfadiazine, sulfamethoxypyridazine and trimethoprim in milk. Food and Agricultural Immunology, 1992, 4, 219-228.	1.4	28
58	Monoclonal Antibodies Neutralize Bacillus cereus Nhe Enterotoxin by Inhibiting Ordered Binding of Its Three Exoprotein Components. Infection and Immunity, 2012, 80, 832-838.	2.2	28
59	Two formats of enzyme immunoassay for 15-acetyldeoxynivalenol applied to wheat. Journal of Agricultural and Food Chemistry, 1993, 41, 2019-2023.	5.2	27
60	Use of monoclonal antibodies for the analysis of mycotoxins. Natural Toxins, 1995, 3, 288-293.	1.0	27
61	Fusarium Species and 8-Keto-Trichothecene Mycotoxins in Manitoba Barley. Cereal Chemistry, 1998, 75, 137-141.	2.2	27
62	Potential of deoxynivalenol to induce transcription factors in human hepatoma cells. Molecular Nutrition and Food Research, 2009, 53, 479-491.	3.3	27
63	Seroprevalence of Anti–Hepatitis E Virus and Anti-Salmonella Antibodies in Pigs at Slaughter in Switzerland. Journal of Food Protection, 2012, 75, 1483-1485.	1.7	27
64	Food Targeting: A Real-Time PCR Assay Targeting 16S rDNA for Direct Quantification of <i>Alicyclobacillus</i> spp. Spores after Aptamer-Based Enrichment. Journal of Agricultural and Food Chemistry, 2015, 63, 4291-4296.	5.2	27
65	Development of a Generic Enzyme-Immunoassay for the Detection of Fluoro(quinolone)-Residues in Foodstuffs Based on a Highly Sensitive Monoclonal Antibody. Food Analytical Methods, 2020, 13, 780-792.	2.6	27
66	Comparison of enzyme immunoassay and mouse bioassay for determining paralytic shellfish poisoning toxins in shellfish. Food Additives and Contaminants, 1997, 14, 193-198.	2.0	26
67	Production and characterization of groupâ€specific antibodies against penicillin antibiotics. Food and Agricultural Immunology, 1998, 10, 317-324.	1.4	25
68	Formation of small transmembrane pores: An intermediate stage on the way to Bacillus cereus non-hemolytic enterotoxin (Nhe) full pores in the absence of NheA. Biochemical and Biophysical Research Communications, 2016, 469, 613-618.	2.1	25
69	Evidence for Complex Formation of the Bacillus cereus Haemolysin BL Components in Solution. Toxins, 2017, 9, 288.	3.4	24
70	Binding to The Target Cell Surface Is The Crucial Step in Pore Formation of Hemolysin BL from Bacillus cereus. Toxins, 2019, 11, 281.	3.4	24
71	Determination of Citrinin in Barley by Indirect and Direct Enzyme Immunoassay. Journal of AOAC INTERNATIONAL, 1996, 79, 1325-1329.	1.5	23
72	Biochemical evidence for the proteolytic degradation of infectious prion protein PrPsc in hamster brain homogenates by foodborne bacteria. Systematic and Applied Microbiology, 2006, 29, 165-171.	2.8	23

#	Article	IF	CITATIONS
73	Enzyme Immunoassay for Mycophenolic Acid in Milk and Cheese. Journal of Agricultural and Food Chemistry, 2008, 56, 6857-6862.	5.2	23
74	Enzyme immunoassay for the detection of isoxazolyl penicillin antibiotics in milk. Analyst, The, 1994, 119, 2765-2768.	3.5	22
75	Fumonisin intake of the German consumer. Mycotoxin Research, 2008, 24, 40-52.	2.3	21
76	A broadly applicable approach to prepare monoclonal anti-cephalosporin antibodies for immunochemical residue determination in milk. Analytical and Bioanalytical Chemistry, 2012, 403, 503-515.	3.7	21
77	Enteropathogenic Potential of Bacillus thuringiensis Isolates from Soil, Animals, Food and Biopesticides. Foods, 2020, 9, 1484.	4.3	21
78	Development of a sensitive enzyme-linked immunosorbent assay for the detection of diacetoxyscirpenol. International Journal of Food Microbiology, 1988, 6, 9-17.	4.7	19
79	Detection of Listeria monocytogenes in pork and beef using the VIDAS® LMO2 automated enzyme linked immunoassay method. Meat Science, 2011, 88, 594-596.	5.5	19
80	Production and characterization of antibodies against neosaxitoxin utilizing a novel immunogen Synthesis procedure. Food and Agricultural Immunology, 1995, 7, 315-322.	1.4	16
81	Colony immunoblot assay for the detection of hemolysin BL enterotoxin producing. FEMS Microbiology Letters, 2004, 238, 107-113.	1.8	16
82	Ordered self-assembly of proteins for computation in mammalian cells. Chemical Communications, 2014, 50, 676-678.	4.1	16
83	Electrochemical Biochip Assays Based on Anti-idiotypic Antibodies for Rapid and Automated On-Site Detection of Low Molecular Weight Toxins. Frontiers in Chemistry, 2019, 7, 31.	3.6	16
84	Nuclease fluorescence assay for the detection of verotoxin genes in raw milk. Letters in Applied Microbiology, 2002, 35, 153-156.	2.2	15
85	Occurrence of L. monocytogenes in ready-to-eat poultry products available on the German market. Food Research International, 2012, 48, 944-947.	6.2	15
86	Non-hemolytic enterotoxin of <i>Bacillus cereus</i> induces apoptosis in Vero cells. Cellular Microbiology, 2017, 19, e12684.	2.1	15
87	Multiplexed Lateral Flow Test for Detection and Differentiation of Cronobacter sakazakii Serotypes O1 and O2. Frontiers in Microbiology, 2017, 8, 1826.	3.5	15
88	Effect of heterologous paralytic shellfish poisoning toxin-enzyme conjugates on the cross-reactivity of a saxitoxin enzyme immunoassay. Letters in Applied Microbiology, 1994, 18, 337-339.	2.2	14
89	Detection and characterization of Shiga toxin-producing <i>Escherichia coli</i> in faeces and lymphatic tissue of free-ranging deer. Epidemiology and Infection, 2013, 141, 251-259.	2.1	14
90	Development of a Polyclonal Antibody-Based Sandwich Enzyme-Linked Immunosorbent Assay for the Detection of Spores of <i>Alicyclobacillus acidoterrestris</i> in Various Fruit Juices. Journal of Agricultural and Food Chemistry, 2016, 64, 497-504.	5.2	14

#	Article	IF	CITATIONS
91	A gold nanoparticles growth-based immunoassay for detection of antibiotic residues. Analytical Methods, 2017, 9, 188-191.	2.7	13
92	A monoclonal antibody-based enzyme immunoassay for the detection of T-2 toxin at picogram levels. Letters in Applied Microbiology, 1989, 9, 133-135.	2.2	12
93	Citrinin in fruit juices. Mycotoxin Research, 2001, 17, 156-159.	2.3	12
94	Inhibition of cytotoxicity by the Nhe cytotoxin of Bacillus cereus through the interaction of dodecyl maltoside with the NheB component. FEMS Microbiology Letters, 2012, 330, 98-104.	1.8	12
95	Microfluidic Chip-Based Immunoassay for Reliable Detection of Cloxacillin in Poultry. Food Analytical Methods, 2016, 9, 3163-3169.	2.6	12
96	Porcine Gastric Mucin Triggers Toxin Production of Enteropathogenic <i>Bacillus cereus</i> . Infection and Immunity, 2019, 87, .	2.2	12
97	Cellular Prion Protein in the Bovine Mammary Gland Is Selectively Expressed in Active Lactocytes. Journal of Histochemistry and Cytochemistry, 2006, 54, 1255-1261.	2.5	11
98	Induction of MAPK-dependent transcription factors by deoxynivalenol in human cell lines. Mycotoxin Research, 2010, 26, 9-14.	2.3	11
99	Simultaneous Rapid Detection and Serotyping of Cronobacter sakazakii Serotypes O1, O2, and O3 by Using Specific Monoclonal Antibodies. Applied and Environmental Microbiology, 2016, 82, 2300-2311.	3.1	11
100	An Electrochemical Fiveplex Biochip Assay Based on Anti-Idiotypic Antibodies for Fast On-Site Detection of Bioterrorism Relevant Low Molecular Weight Toxins. Toxins, 2019, 11, 696.	3.4	11
101	Staphylokokken-Enterotoxine: Bildung, Eigenschaften und Nachweis. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 2007, 2, 171-189.	1.4	10
102	Cellular prion protein in mammary gland and milk fractions of domestic ruminants. Biochemical and Biophysical Research Communications, 2008, 369, 841-844.	2.1	10
103	A cellular logic circuit for the detection of bacterial pore-forming toxins. Chemical Communications, 2013, 49, 5198.	4.1	10
104	Validation Procedure for Multiplex Antibiotic Immunoassays Using Flow-Based Chemiluminescence Microarrays. Methods in Molecular Biology, 2017, 1518, 195-212.	0.9	9
105	A Monoclonal Antibody to Saxitoxin. Food and Agricultural Immunology, 1990, 2, 47-48.	1.4	8
106	Rapid detection of streptomycin and Dihydrostreptomycin in milk by enzymeâ€linked immunofiltration assay. Food and Agricultural Immunology, 1996, 8, 269-272.	1.4	8
107	A Cronobacter turicensis O1 Antigen-Specific Monoclonal Antibody Inhibits Bacterial Motility and Entry into Epithelial Cells. Infection and Immunity, 2015, 83, 876-887.	2.2	8
108	Characteristics of the Protein Complexes and Pores Formed by Bacillus cereus Hemolysin BL. Toxins, 2020, 12, 672.	3.4	8

#	Article	IF	CITATIONS
109	Preparation and characterization of polyclonal and monoclonal antibodies against fusarenonâ€X. Food and Agricultural Immunology, 1989, 1, 137-146.	1.4	7
110	Detection of Acetylated Deoxynivalenol by Enzyme-Linked Immunosorbent Assay. ACS Symposium Series, 1996, , 314-321.	0.5	7
111	Stability of Bovine Spongiform Encephalopathy Prions: Absence of Prion Protein Degradation by Bovine Gut Microbiota. Zoonoses and Public Health, 2012, 59, 251-255.	2.2	7
112	Integrating scFv into xMAP Assays for the Detection of Marine Toxins. Toxins, 2016, 8, 346.	3.4	7
113	Circular Rep-Encoding Single-Stranded DNA Sequences in Milk from Water Buffaloes (Bubalus arnee f.) Tj ETQq1	1 9.78431	4,fgBT /Over
114	Identification and Characterization of Circular Single-Stranded DNA Genomes in Sheep and Goat Milk. Viruses, 2021, 13, 2176.	3.3	7
115	Immunochemical Method for Citrinin. , 2001, 157, 195-204.		6
116	Prion protein expression in bovine podocytes and extraglomerular mesangial cells. Cell and Tissue Research, 2006, 324, 497-505.	2.9	6
117	Rapid immunochemical tests for qualitative and quantitative determination of T-2 and HT-2 toxins. Analytical Methods, 2012, 4, 4244.	2.7	6
118	Versatile antibody-sensing Boolean logic for the simultaneous detection of multiple bacterial toxins. Chemical Communications, 2013, 49, 9314.	4.1	6
119	Production and characterization of a monoclonal antibody to chloramphenicol. Food and Agricultural Immunology, 1989, 1, 197-201.	1.4	5
120	Rapid enzyme immunoassays for the detection of three sulphonamides in milk. Food and Agricultural Immunology, 1995, 7, 253-258.	1.4	5
121	Citrinin in the diet of young and healthy persons living in balkan endemic nephropathy areas. Mycotoxin Research, 2000, 16, 150-153.	2.3	5
122	Impact of DUSP1 on the apoptotic potential of deoxynivalenol in the epithelial cell line HepG2. Toxicology Letters, 2010, 199, 43-50.	0.8	5
123	The Mutation Glu151Asp in the B-Component of the Bacillus cereus Non-Hemolytic Enterotoxin (Nhe) Leads to a Diverging Reactivity in Antibody-Based Detection Systems. Toxins, 2015, 7, 4655-4667.	3.4	5
124	Microarray-Based Immunoassay for Parallel Quantification of Multiple Mycotoxins in Oat. Methods in Molecular Biology, 2017, 1536, 143-156.	0.9	5
125	Improvement in Salmonella detection in milk and dairy products: comparison between the ISO method and the Oxoid SPRINT Salmonella test. Letters in Applied Microbiology, 2000, 31, 443-448.	2.2	4
126	Development and application of monoclonal antibodies against the mycotoxin mycophenolic acid. Mycotoxin Research, 2015, 31, 185-190.	2.3	4

Erwin Mätlbauer

#	Article	IF	CITATIONS
127	Mycobacterium avium subsp. paratuberculosis Proteome Changes Profoundly in Milk. Metabolites, 2021, 11, 549.	2.9	4
128	Peripheral blood bovine lymphocytes and MAP show distinctly different proteome changes and immune pathways in host-pathogen interaction. PeerJ, 2019, 7, e8130.	2.0	4
129	Immunochemical Approaches to the Analysis of Paralytic Shellfish Poisoning Toxins. ACS Symposium Series, 1996, , 395-403.	0.5	3
130	Development and application of immunochromatographic tests for the detection of staphylococcal enterotoxin E. Food and Agricultural Immunology, 1998, 10, 249-257.	1.4	3
131	Immunochemical Method for Ochratoxin A. , 2001, 157, 81-94.		3
132	Development and application of an enzyme-linked immunosorbent assay for the analysis of hydrolyzed fumonisins. Mycotoxin Research, 2001, 17, 120-124.	2.3	3
133	High Frequency of Multiresistant Coagulase-Positive <i>Staphylococcus aureus</i> Found in Slaughter Pigs in Uruguay. Foodborne Pathogens and Disease, 2012, 9, 86-90.	1.8	3
134	Characterization of strain-specific Bacillus cereus swimming motility and flagella by means of specific antibodies. PLoS ONE, 2022, 17, e0265425.	2.5	3
135	Comparison of Direct and Indirect Enzyme Immunoassays for the Detection of the Mycotoxin Citrinin. ACS Symposium Series, 1996, , 322-329.	0.5	2
136	Production and Characterization of Antibodies Against Histamine. ACS Symposium Series, 1996, , 413-420.	0.5	2
137	Draft Genome Sequence and Annotation of Acinetobacter junii MHI21018, Isolated from Bovine Colostrum. Microbiology Resource Announcements, 2019, 8, .	0.6	2
138	Bacillus cereus Toxins. Toxins, 2021, 13, 295.	3.4	2
139	Immunoassays in der Lebensmittelanalytik. Analytiker-Taschenbuch, 1998, , 223-250.	0.2	2
140	Presence and function of Hbl B', the fourth protein component encoded by the <i>hbl</i> operon in <i>Bacillus cereus</i> . Virulence, 2022, 13, 483-501.	4.4	1
141	Immunochemical Detection of Streptomycin in Honey. ACS Symposium Series, 1996, , 74-81.	0.5	0
142	New Analytical Methods for the Detection of Veterinary Drugs in Milk. , 1993, , 111-119.		0
143	Pudding Proteomics: Cyclomaltodextrin Glucanotransferase and Microbial Proteases Can Liquefy Extended Shelf Life Dairy Products. Metabolites, 2022, 12, 254.	2.9	Ο