Frank I Tarazi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/880356/publications.pdf

Version: 2024-02-01

93 papers 5,256 citations

94433 37 h-index 66 g-index

93 all docs 93 docs citations 93 times ranked 5278 citing authors

#	Article	IF	CITATIONS
1	Novel antidepressant drugs: Beyond monoamine targets. CNS Spectrums, 2023, 28, 6-15.	1.2	19
2	Zinc deficiency and supplementation in autism spectrum disorder and ⟨scp⟩Phelanâ€McDermid⟨/scp⟩ syndrome. Journal of Neuroscience Research, 2022, 100, 970-978.	2.9	9
3	The role of dopamine D ₃ receptors in the mechanism of action of cariprazine. CNS Spectrums, 2020, 25, 343-351.	1.2	37
4	Vitamin D Supplementation Ameliorates Severity of Major Depressive Disorder. Journal of Molecular Neuroscience, 2020, 70, 230-235.	2.3	35
5	What's Love Got to do with it: Role of oxytocin in trauma, attachment and resilience. , 2020, 214, 107602.		30
6	Pharmacotherapy of schizophrenia: toward a metabolomic-based approach. CNS Spectrums, 2019, 24, 281-286.	1.2	11
7	Vitamin D supplementation ameliorates severity of generalized anxiety disorder (GAD). Metabolic Brain Disease, 2019, 34, 1781-1786.	2.9	14
8	Vortioxetine: a novel antidepressant for the treatment of major depressive disorder. Expert Opinion on Drug Discovery, 2019, 14, 81-89.	5.0	70
9	Pimavanserin: novel pharmacotherapy for Parkinson's disease psychosis. Expert Opinion on Drug Discovery, 2018, 13, 103-110.	5.0	35
10	Longâ€ŧerm effects of iloperidone on cerebral dopamine receptor subtypes. Synapse, 2018, 72, e22039.	1.2	4
11	Autism Spectrum Disorder: Classification, diagnosis and therapy. , 2018, 190, 91-104.		296
12	Long-Term Effects of lloperidone on Cerebral Serotonin and Adrenoceptor Subtypes. Journal of Molecular Neuroscience, 2018, 66, 59-67.	2.3	3
13	Long-term effects of aripiprazole exposure on monoaminergic and glutamatergic receptor subtypes: comparison with cariprazine. CNS Spectrums, 2017, 22, 484-494.	1.2	16
14	Clinical and therapeutic role of mentalization in schizophreniaâ€"a review. CNS Spectrums, 2017, 22, 450-462.	1.2	13
15	Developmental effects of antipsychotic drugs on serotonin receptor subtypes. Synapse, 2017, 71, e21988.	1.2	5
16	Dopamine and μ-opioid receptor dysregulation in the brains of binge-eating female rats – possible relevance in the psychopathology and treatment of binge-eating disorder. Journal of Psychopharmacology, 2017, 31, 770-783.	4.0	20
17	Clinical management of restless legs syndrome in end-stage renal disease patients. CNS Spectrums, 2017, 22, 14-21.	1.2	7
18	Differential effects of vilazodone versus citalopram and paroxetine on sexual behaviors and serotonin transporter and receptors in male rats. Psychopharmacology, 2016, 233, 1025-1034.	3.1	38

#	Article	IF	CITATIONS
19	The Preclinical and Clinical Effects of Vilazodone for the Treatment of Major Depressive Disorder. Expert Opinion on Drug Discovery, 2016, 11, 515-523.	5.0	53
20	Asperger's syndrome: diagnosis, comorbidity and therapy. Expert Review of Neurotherapeutics, 2015, 15, 281-293.	2.8	16
21	Geneââ,¬â€œEnvironment Interaction in Major Depression: Focus on Experience-Dependent Biological Systems. Frontiers in Psychiatry, 2015, 6, 68.	2.6	113
22	Clinical management of negative symptoms of schizophrenia: An update., 2015, 153, 135-147.		55
23	Long-term effects of cariprazine exposure on dopamine receptor subtypes. CNS Spectrums, 2014, 19, 268-277.	1.2	172
24	Effects of antidepressant drug exposure on gene expression in the developing cerebral cortex. Synapse, 2014, 68, 209-220.	1.2	10
25	The preclinical profile of asenapine: clinical relevance for the treatment of schizophrenia and bipolar mania. Expert Opinion on Drug Discovery, 2013, 8, 93-103.	5.0	23
26	Bapineuzumab and solanezumab for Alzheimer's disease: is the †amyloid cascade hypothesis' still alive?. Expert Opinion on Biological Therapy, 2013, 13, 1075-1084.	3.1	100
27	The preclinical profile of lurasidone: clinical relevance for the treatment of schizophrenia. Expert Opinion on Drug Discovery, 2013, 8, 1297-1307.	5.0	25
28	A Translational Approach to Evaluate the Efficacy and Safety of the Novel AMPA Receptor Positive Allosteric Modulator Org 26576 in Adult Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry, 2012, 72, 971-977.	1.3	39
29	New Pyridobenzoxazepine Derivatives Derived from 5-(4-Methylpiperazin-1-yl)-8-chloro-pyrido[2,3- <i>b</i> [1,5]benzoxazepine (JL13): Chemical Synthesis and Pharmacological Evaluation. Journal of Medicinal Chemistry, 2012, 55, 1572-1582.	6.4	23
30	Iloperidone, asenapine and lurasidone: a primer on their current status. Expert Opinion on Pharmacotherapy, 2012, 13, 1911-1922.	1.8	189
31	Pharmacological characterization of the norepinephrine and dopamine reuptake inhibitor EBâ€1020: Implications for treatment of attentionâ€deficit hyperactivity disorder. Synapse, 2012, 66, 522-532.	1.2	42
32	Pharmacotherapies for Alzheimer's disease: Beyond cholinesterase inhibitors., 2012, 134, 8-25.		180
33	Repeated effects of asenapine on adrenergic and cholinergic muscarinic receptors. International Journal of Neuropsychopharmacology, 2010, 13, 405.	2.1	16
34	The effectiveness of multi-target agents in schizophrenia and mood disorders: Relevance of receptor signature to clinical action., 2010, 126, 173-185.		67
35	Asenapine induces differential regional effects on serotonin receptor subtypes. Journal of Psychopharmacology, 2010, 24, 341-348.	4.0	33
36	Effects of repeated risperidone exposure on serotonin receptor subtypes in developing rats. European Neuropsychopharmacology, 2010, 20, 187-194.	0.7	38

#	Article	IF	CITATIONS
37	Alterations in dopamine and glutamate neurotransmission in tetrahydrobiopterin deficient spr-/- mice: relevance to schizophrenia. BMB Reports, 2010, 43, 593-598.	2.4	18
38	Subchronic Effects of Phencyclidine on Dopamine and Serotonin Receptors: Implications for Schizophrenia. Journal of Molecular Neuroscience, 2009, 38, 227-235.	2.3	31
39	Asenapine exerts distinctive regional effects on ionotropic glutamate receptor subtypes in rat brain. Synapse, 2009, 63, 413-420.	1.2	31
40	Effects of risperidone on glutamate receptor subtypes in developing rat brain. European Neuropsychopharmacology, 2009, 19, 77-84.	0.7	45
41	Asenapine maleate: A new drug for the treatment of schizophrenia and bipolar mania. Drugs of Today, 2009, 45, 865.	1.1	23
42	Differential regional and dose-related effects of asenapine on dopamine receptor subtypes. Psychopharmacology, 2008, 198, 103-111.	3.1	35
43	Synthesis and binding studies of 2-O- and 11-O-substituted N-alkylnoraporphines. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 3971-3973.	2.2	16
44	Synthesis and Dopamine Receptor Affinities of $\langle i \rangle N \langle i \rangle$ -Alkyl-11-hydroxy-2-methoxynoraporphines: $\langle i \rangle N \langle i \rangle$ -Alkyl Substituents Determine D1 versus D2 Receptor Selectivity. Journal of Medicinal Chemistry, 2008, 51, 983-987.	6.4	30
45	Effects of risperidone on dopamine receptor subtypes in developing rat brain. European Neuropsychopharmacology, 2007, 17, 448-455.	0.7	26
46	Development of SPECT imaging agents for the norepinephrine transporters: [1231]INER. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 533-537.	2.2	25
47	R-(â^')-N-alkyl-11-hydroxy-10-hydroxymethyl- and 10-methyl-aporphines as 5-HT1A receptor ligands. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 4128-4130.	2.2	12
48	Effects of prenatal stress on dopamine D2 receptor asymmetry in rat brain. Synapse, 2007, 61, 459-462.	1.2	26
49	Long-term Effects of JL 13, a Potential Atypical Antipsychotic, on Ionotropic Glutamate Receptors. Journal of Molecular Neuroscience, 2007, 32, 192-198.	2.3	6
50	Repeated antipsychotic drug exposurein developing rats: Dopamine receptor effects. Synapse, 2006, 59, 92-100.	1.2	37
51	Long-term effects of JL 13 , a potential atypical antipsychotic, on rat dopamine and serotonin receptor subtypes. Journal of Neuroscience Research, 2006, 84, 675-682.	2.9	6
52	3,4-Dihydroxyphenylalanine Reverses the Motor Deficits in Pitx3-Deficient Aphakia Mice: Behavioral Characterization of a Novel Genetic Model of Parkinson's Disease. Journal of Neuroscience, 2005, 25, 2132-2137.	3.6	162
53	Atomoxetine blocks motor hyperactivity in neonatal 6-hydroxydopamine-lesioned rats: implications for treatment of attention-deficit hyperactivity disorder. International Journal of Neuropsychopharmacology, 2005, 8, 439-444.	2.1	34
54	Regulation of Working Memory by Dopamine D4 Receptor in Rats. Neuropsychopharmacology, 2004, 29, 1648-1655.	5.4	98

#	Article	IF	Citations
55	Enhanced Expression of Dopamine D ₁ and Glutamate NMDA Receptors in Dopamine D ₄ Receptor Knockout Mice. Journal of Molecular Neuroscience, 2004, 22, 167-178.	2.3	44
56	Early adoption modifies the effects of prenatal stress on dopamine and glutamate receptors in adult rat brain. Journal of Neuroscience Research, 2004, 76, 488-496.	2.9	71
57	Dopamine D4Receptors: Beyond Schizophrenia. Journal of Receptor and Signal Transduction Research, 2004, 24, 131-147.	2.5	57
58	Animal models of attention-deficit hyperactivity disorder. Brain Research Reviews, 2003, 42, 1-21.	9.0	211
59	Long-Term Effects of Olanzapine, Risperidone, and Quetiapine on Ionotropic Glutamate Receptor Types: Implications for Antipsychotic Drug Treatment. Journal of Pharmacology and Experimental Therapeutics, 2003, 306, 1145-1151.	2.5	76
60	Effects of Norepinephrine and Serotonin Transporter Inhibitors on Hyperactivity Induced by Neonatal 6-Hydroxydopamine Lesioning in Rats. Journal of Pharmacology and Experimental Therapeutics, 2002, 301, 1097-1102.	2.5	84
61	Effects of Newer Antipsychotics on Extrapyramidal Function. CNS Drugs, 2002, 16, 23-45.	5.9	251
62	Long-term effects of newer antipsychotic drugs on neuronal nitric oxide synthase in rat brain. Nitric Oxide - Biology and Chemistry, 2002, 7, 297-300.	2.7	32
63	Serotonin transporter binding increases in caudate-putamen and nucleus accumbens after neonatal 6-hydroxydopamine lesions in rats: implications for motor hyperactivity. Developmental Brain Research, 2002, 137, 135-138.	1.7	31
64	Plasticity of Dopamine D4 Receptors in Rat Forebrain Temporal Association with Motor Hyperactivity Following Neonatal 6-Hydroxydopamine Lesioning. Neuropsychopharmacology, 2002, 26, 625-633.	5.4	44
65	Stereoselective effects of methylphenidate on motor hyperactivity in juvenile rats induced by neonatal 6-hydroxydopamine lesioning. Psychopharmacology, 2002, 160, 92-98.	3.1	73
66	Long-term effects of olanzapine, risperidone, and quetiapine on serotonin 1A, 2A and 2C receptors in rat forebrain regions. Psychopharmacology, 2002, 161, 263-270.	3.1	88
67	Effects of dopamine D 4 receptor-selective antagonists on motor hyperactivity in rats with neonatal 6-hydroxydopamine lesions. Psychopharmacology, 2002, 161, 100-106.	3.1	50
68	Long-term effects of prenatal stress on dopamine and glutamate receptors in adult rat brain. Neurochemical Research, 2002, 27, 1525-1533.	3.3	159
69	Nigrostriatal dopaminergic denervation enhances dopamine D4 receptor binding in rat caudate–putamen. Pharmacology Biochemistry and Behavior, 2001, 69, 111-116.	2.9	10
70	Long-term effects of olanzapine, risperidone, and quetiapine on dopamine receptor types in regions of rat brain: implications for antipsychotic drug treatment. Journal of Pharmacology and Experimental Therapeutics, 2001, 297, 711-7.	2.5	77
71	Effects of nigrostriatal dopamine denervation on ionotropic glutamate receptors in rat caudate-putamen. Brain Research, 2000, 881, 69-72.	2.2	8
72	Olanzapine, quetiapine, and risperidone: long-term effects on monoamine transporters in rat forebrain. Neuroscience Letters, 2000, 287, 81-84.	2.1	18

#	Article	IF	CITATIONS
73	Comparative postnatal development of dopamine D ₁ , D ₂ and D ₄ receptors in rat forebrain. International Journal of Developmental Neuroscience, 2000, 18, 29-37.	1.6	287
74	Alkylation of rat dopamine transporters and blockade of dopamine uptake by EEDQ. Neuropharmacology, 2000, 39, 2133-2138.	4.1	5
75	Brain dopamine D4 receptors: basic and clinical status. International Journal of Neuropsychopharmacology, 1999, 2, 41-58.	2.1	31
76	Dopamine D4 receptors: significance for molecular psychiatry at the millennium. Molecular Psychiatry, 1999, 4, 529-538.	7.9	71
77	Effects of alkylating agents on dopamine D3 receptors in rat brain: selective protection by dopamine. Brain Research, 1999, 847, 32-37.	2.2	19
78	Neuropharmacological assessment of potential dopamine D4 receptor-selective radioligands. European Journal of Pharmacology, 1999, 367, 139-142.	3.5	9
79	[3H] \hat{l}^2 -CIT: a radioligand for dopamine transporters in rat brain tissue. European Journal of Pharmacology, 1999, 385, 291-294.	3.5	38
80	Regional localization of dopamine and ionotropic glutamate receptor subtypes in striatolimbic brain regions., 1999, 55, 401-410.		43
81	Selective alkylatation of dopamine D2 and D4 receptors in rat brain by N-(p-isothiocyanatophenethyl)spiperone. Neuroscience Letters, 1999, 274, 155-158.	2.1	2
82	Effects of chronic treatment with typical and atypical antipsychotic drugs on the rat striatum. Life Sciences, 1999, 64, 1595-1602.	4.3	26
83	Postnatal Development of Dopamine D ₁ -Like Receptors in Rat Cortical and Striatolimbic Brain Regions: An Autoradiographic Study. Developmental Neuroscience, 1999, 21, 43-49.	2.0	149
84	Postnatal development of dopamine D4-like receptors in rat forebrain regions: comparison with D2-like receptors. Developmental Brain Research, 1998, 110, 227-233.	1.7	109
85	Localization of ionotropic glutamate receptors in caudate-putamen and nucleus accumbens septi of rat brain: Comparison of NMDA, AMPA, and kainate receptors. Synapse, 1998, 30, 227-235.	1.2	78
86	Medial prefrontal cortical D2 and striatolimbic D4 dopamine receptors: Common targets for typical and atypical antepsychotic drugs. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1998, 22, 693-707.	4.8	24
87	Effects of hippocampal lesions on striatolimbic ionotropic glutamatergic receptors. Neuroscience Letters, 1998, 250, 13-16.	2.1	14
88	Postnatal development of dopamine and serotonin transporters in rat caudate-putamen and nucleus accumbens septi. Neuroscience Letters, 1998, 254, 21-24.	2.1	153
89	Localization of ionotropic glutamate receptors in caudateâ€putamen and nucleus accumbens septi of rat brain: Comparison of NMDA, AMPA, and kainate receptors. Synapse, 1998, 30, 227-235.	1.2	4
90	Regional distribution of dopamine D4 receptors in rat forebrain. NeuroReport, 1997, 8, 3423-3426.	1.2	64

#	Article	IF	CITATIONS
91	Long-Term Effects of S(+)N-n-Propylnorapomorphine Compared with Typical and Atypical Antipsychotics: Differential Increases of Cerebrocortical D2-Like and Striatolimbic D4-Like Dopamine Receptors. Neuropsychopharmacology, 1997, 17, 186-196.	5 . 4	53
92	Compounds selective for dopamine receptor subtypes. Drug Discovery Today, 1997, 2, 333-340.	6.4	82
93	Brain Dopamine Receptors: A Primer on Their Current Status, Basic and Clinical. Harvard Review of Psychiatry, 1996, 3, 301-325.	2.1	94