Naoaki Saito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8803202/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phosphoproteomic of the acetylcholine pathway enables discovery of the PKC-Î ² -PIX-Rac1-PAK cascade as a stimulatory signal for aversive learning. Molecular Psychiatry, 2022, 27, 3479-3492.	7.9	7
2	Nox3-Derived Superoxide in Cochleae Induces Sensorineural Hearing Loss. Journal of Neuroscience, 2021, 41, 4716-4731.	3.6	20
3	Rac-Dependent Signaling from Keratinocytes Promotes Differentiation of Intradermal White Adipocytes. Journal of Investigative Dermatology, 2020, 140, 75-84.e6.	0.7	6
4	mTORC1 is involved in DGKβ-induced neurite outgrowth and spinogenesis. Neurochemistry International, 2020, 134, 104645.	3.8	5
5	The integrity of cochlear hair cells is established and maintained through the localization of Dia1 at apical junctional complexes and stereocilia. Cell Death and Disease, 2020, 11, 536.	6.3	17
6	Congenital hearing impairment associated with peripheral cochlear nerve dysmyelination in glycosylation-deficient muscular dystrophy. PLoS Genetics, 2020, 16, e1008826.	3.5	11
7	DGKÎ ³ Knock-Out Mice Show Impairments in Cerebellar Motor Coordination, LTD, and the Dendritic Development of Purkinje Cells through the Activation of PKCÎ ³ . ENeuro, 2020, 7, ENEURO.0319-19.2020.	1.9	11
8	Title is missing!. , 2020, 16, e1008826.		0
9	Title is missing!. , 2020, 16, e1008826.		0
10	Title is missing!. , 2020, 16, e1008826.		0
11	Title is missing!. , 2020, 16, e1008826.		0
12	Title is missing!. , 2020, 16, e1008826.		0
13	Title is missing!. , 2020, 16, e1008826.		0
14	Spinocerebellar ataxia type 14 caused by a nonsense mutation in the PRKCG gene. Molecular and Cellular Neurosciences, 2019, 98, 46-53.	2.2	14
15	Hearing vulnerability after noise exposure in a mouse model of reactive oxygen species overproduction. Journal of Neurochemistry, 2018, 146, 459-473.	3.9	18
16	Roles of Cdc42 and Rac in Bergmann glia during cerebellar corticogenesis. Experimental Neurology, 2018, 302, 57-67.	4.1	13
17	The Role of Cysteine String Protein α Phosphorylation at Serine 10 and 34 by Protein Kinase Cγ for Presynaptic Maintenance. Journal of Neuroscience, 2018, 38, 278-290.	3.6	14
18	Propofol induced diverse and subtype-specific translocation of PKC families. Journal of Pharmacological Sciences, 2018, 137, 20-29.	2.5	7

ΝΑΟΑΚΙ SΑΙΤΟ

#	Article	IF	CITATIONS
19	Xeroderma pigmentosum group C protein interacts with histones: regulation by acetylated states of histone H3. Genes To Cells, 2017, 22, 310-327.	1.2	22
20	Novel role of Rac-Mid1 signaling in medial cerebellar development. Development (Cambridge), 2017, 144, 1863-1875.	2.5	27
21	Golgi-Associated Protein Kinase C-ε Is Delivered to Phagocytic Cups: Role of Phosphatidylinositol 4-Phosphate. Journal of Immunology, 2017, 199, 271-277.	0.8	9
22	A Novel Rac1-GSPT1 Signaling Pathway Controls Astrogliosis Following Central Nervous System Injury. Journal of Biological Chemistry, 2017, 292, 1240-1250.	3.4	28
23	Diacylglycerol Kinase alpha is Involved in the Vitamin E-Induced Amelioration of Diabetic Nephropathy in Mice. Scientific Reports, 2017, 7, 2597.	3.3	21
24	Loss of the Phenolic Hydroxyl Group and Aromaticity from the Side Chain of Anti-Proliferative 10-Methyl-aplog-1, a Simplified Analog of Aplysiatoxin, Enhances Its Tumor-Promoting and Proinflammatory Activities. Molecules, 2017, 22, 631.	3.8	4
25	Validation of Anti-CSPα, SNAP25, Tyrosine Hydroxylase, Ubiquitin, Cleaved Caspase 3, and pSer PKC Motif Antibodies for Utilization in Western Blotting. Acta Histochemica Et Cytochemica, 2017, 50, 177-180.	1.6	4
26	Constitutive activation of <scp>DIA</scp> 1 (<scp>DIAPH</scp> 1) via Câ€ŧerminal truncation causes human sensorineural hearing loss. EMBO Molecular Medicine, 2016, 8, 1310-1324.	6.9	51
27	The Extracellular A-loop of Dual Oxidases Affects the Specificity of Reactive Oxygen Species Release. Journal of Biological Chemistry, 2015, 290, 6495-6506.	3.4	34
28	Essential role of constitutive androstane receptor in Ginkgo biloba extract induced liver hypertrophy and hepatocarcinogenesis. Food and Chemical Toxicology, 2015, 83, 201-209.	3.6	16
29	RANTES/CCL5 mediated-biological effects depend on the syndecan-4/PKCα signaling pathway. Biology Open, 2014, 3, 995-1004.	1.2	9
30	The Role of Pak-Interacting Exchange Factor-Â Phosphorylation at Serines 340 and 583 by PKCÂ in Dopamine Release. Journal of Neuroscience, 2014, 34, 9268-9280.	3.6	16
31	Maintenance of stereocilia and apical junctional complexes by Cdc42 in cochlear hair cells. Journal of Cell Science, 2014, 127, 2040-52.	2.0	53
32	Diacylglycerol kinase as a possible therapeutic target for neuronal diseases. Journal of Biomedical Science, 2014, 21, 28.	7.0	38
33	Both the C1 domain and a basic amino acid cluster at the C-terminus are important for the neurite and branch induction ability of DGKl². Biochemical and Biophysical Research Communications, 2014, 447, 89-94.	2.1	7
34	Diacylglycerol kinase γ regulates antigen-induced mast cell degranulation by mediating Ca2+ influxes. Biochemical and Biophysical Research Communications, 2014, 445, 340-345.	2.1	15
35	PKC-É› pseudosubstrate and catalytic activity are necessary for membrane delivery during IgG-mediated phagocytosis. Journal of Leukocyte Biology, 2013, 94, 109-122.	3.3	11
36	Novel PKCα-mediated phosphorylation site(s) on cofilin and their potential role in terminating histamine release. Molecular Biology of the Cell, 2012, 23, 3707-3721.	2.1	20

ΝΑΟΑΚΙ SΑΙΤΟ

#	Article	IF	CITATIONS
37	c-Abl Tyrosine Kinase Regulates Serum-induced Nuclear Export of Diacylglycerol Kinase α by Phosphorylation at Tyr-218. Journal of Biological Chemistry, 2012, 287, 5507-5517.	3.4	20

3P212 Single-molecule tracking of PKC received and transferred by diffusing small antennas of signal-induced diacylglycerol(Cell biology,The 48th Annual Meeting of the Biophysical Society of) Tj ETQq0 0 0 rgBT0/@verlock010 Tf 50 6

39	Effect of Trehalose on the Properties of Mutant γPKC, Which Causes Spinocerebellar Ataxia Type 14, in Neuronal Cell Lines and Cultured Purkinje Cells*. Journal of Biological Chemistry, 2010, 285, 33252-33264.	3.4	25
40	Protein Kinase C-induced Phosphorylation of Orai1 Regulates the Intracellular Ca2+ Level via the Store-operated Ca2+ Channel. Journal of Biological Chemistry, 2010, 285, 25720-25730.	3.4	119
41	Mutant γPKC found in spinocerebellar ataxia type 14 induces aggregate-independent maldevelopment of dendrites in primary cultured Purkinje cells. Neurobiology of Disease, 2009, 33, 260-273.	4.4	58
42	Generation of a constitutively active fragment of PKN in microglia/macrophages after middle cerebral artery occlusion in rats. Journal of Neurochemistry, 2008, 79, 903-913.	3.9	22
43	Enzymological Analysis of Mutant Protein Kinase Cγ Causing Spinocerebellar Ataxia Type 14 and Dysfunction in Ca2+ Homeostasis. Journal of Biological Chemistry, 2008, 283, 19854-19863.	3.4	99
44	A Regulated Adaptor Function of p40phox: Distinct p67phoxMembrane Targeting by p40phoxand by p47phox. Molecular Biology of the Cell, 2007, 18, 441-454.	2.1	75
45	Targeting of Protein Kinase C-ïµ during Fcγ Receptor-dependent Phagocytosis Requires the ïµC1B Domain and Phospholipase C-γ1. Molecular Biology of the Cell, 2006, 17, 799-813.	2.1	49
46	Phosphorylation and Up-regulation of Diacylglycerol Kinase Î ³ via Its Interaction with Protein Kinase CÎ ³ . Journal of Biological Chemistry, 2006, 281, 31627-31637.	3.4	41
47	Mutant Protein Kinase CÎ ³ Found in Spinocerebellar Ataxia Type 14 Is Susceptible to Aggregation and Causes Cell Death. Journal of Biological Chemistry, 2005, 280, 29096-29106.	3.4	64
48	Immunocytochemical localization of a neuron-specific diacylglycerol kinase β and γ in the developing rat brain. Molecular Brain Research, 2005, 139, 288-299.	2.3	41
49	Superoxide Production at Phagosomal Cup/Phagosome through βI Protein Kinase C during FcγR-Mediated Phagocytosis in Microglia. Journal of Immunology, 2004, 173, 4582-4589.	0.8	56
50	Isoform-specific Phosphorylation of Metabotropic Glutamate Receptor 5 by Protein Kinase C (PKC) Blocks Ca2+ Oscillation and Oscillatory Translocation of Ca2+-dependent PKC. Journal of Biological Chemistry, 2004, 279, 2254-2261.	3.4	37
51	A role for PKC-ε in FcγR-mediated phagocytosis by RAW 264.7 cells. Journal of Cell Biology, 2002, 159, 939-944.	5.2	83
52	Protein Kinase CÂ (PKCÂ): Function of Neuron Specific Isotype. Journal of Biochemistry, 2002, 132, 683-687.	1.7	185
53	In Vivo Gene Transfer into the Periventricular Region by Electroporation Neurologia Medico-Chirurgica, 2000, 40, 618-623.	2.2	14
54	Role of synaptophysin in exocytotic release of dopamine from Xenopus oocytes injected with rat brain mRNA. Cellular and Molecular Neurobiology, 2000, 20, 401-408.	3.3	17

Ναοακί Saito

#	Article	IF	CITATIONS
55	Subtype-specific Translocation of Diacylglycerol Kinase α and γ and Its Correlation with Protein Kinase C. Journal of Biological Chemistry, 2000, 275, 24760-24766.	3.4	80
56	Differential Requirement for Classic and Novel PKC Isoforms in Respiratory Burst and Phagocytosis in RAW 264.7 Cells. Journal of Immunology, 2000, 165, 2809-2817.	0.8	169
57	Association study of a polymorphism of nonerythroid ?-spectrin gene with schizophrenia. , 1999, 88, 291-293.		2
58	Direct Visualization of the Translocation of the γ-Subspecies of Protein Kinase C in Living Cells Using Fusion Proteins with Green Fluorescent Protein. Journal of Cell Biology, 1997, 139, 1465-1476.	5.2	228
59	Modulation of Serotonin Transporter Activity by a Protein Kinase C Activator and an Inhibitor of Type 1 and 2A Serine/Threonine Phosphatases. Journal of Neurochemistry, 1997, 68, 2618-2624.	3.9	51
60	Electron microscopic localization of γ- and βII-subspecies of protein kinase C in rat hippocampus. Brain Research, 1990, 518, 209-217.	2.2	94