
Doriana Fruci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8802987/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	News on immune checkpoint inhibitors as immunotherapy strategies in adult and pediatric solid tumors. Seminars in Cancer Biology, 2022, 79, 18-43.	9.6	35
2	Nutlin-3a Enhances Natural Killer Cell–Mediated Killing of Neuroblastoma by Restoring p53-Dependent Expression of Ligands for NKG2D and DNAM-1 Receptors. Cancer Immunology Research, 2021, 9, 170-183.	3.4	22
3	ERAP1 and ERAP2 Enzymes: A Protective Shield for RAS against COVID-19?. International Journal of Molecular Sciences, 2021, 22, 1705.	4.1	19
4	GD2 redirected CAR T and activated NK-cell-mediated secretion of IFNÎ ³ overcomes MYCN-dependent IDO1 inhibition, contributing to neuroblastoma cell immune escape. , 2021, 9, e001502.		15
5	Quantification of the Immune Content in Neuroblastoma: Deep Learning and Topological Data Analysis in Digital Pathology. International Journal of Molecular Sciences, 2021, 22, 8804.	4.1	5
6	Enhancement of Neuroblastoma NK-Cell-Mediated Lysis through NF-kB p65 Subunit-Induced Expression of FAS and PVR, the Loss of Which Is Associated with Poor Patient Outcome. Cancers, 2021, 13, 4368.	3.7	5
7	Dendritic Cells: Behind the Scenes of T-Cell Infiltration into the Tumor Microenvironment. Cancers, 2021, 13, 433.	3.7	22
8	ERAP1 as an emerging therapeutic target for medulloblastoma. Trends in Cancer, 2021, , .	7.4	2
9	ERAP1 Controls the Interaction of the Inhibitory Receptor KIR3DL1 With HLA-B51:01 by Affecting Natural Killer Cell Function. Frontiers in Immunology, 2021, 12, 778103.	4.8	6
10	Cellular and gene signatures of tumor-infiltrating dendritic cells and natural-killer cells predict prognosis of neuroblastoma. Nature Communications, 2020, 11, 5992.	12.8	87
11	Impact of Natural Occurring ERAP1 Single Nucleotide Polymorphisms within miRNA-Binding Sites on HCMV Infection. International Journal of Molecular Sciences, 2020, 21, 5861.	4.1	8
12	Genetically driven <scp>CD39</scp> expression shapes human tumorâ€infiltrating <scp>CD8</scp> ⁺ Tâ€cell functions. International Journal of Cancer, 2020, 147, 2597-2610.	5.1	33
13	ERAP1 promotes Hedgehog-dependent tumorigenesis by controlling USP47-mediated degradation of βTrCP. Nature Communications, 2019, 10, 3304.	12.8	35
14	Exosomal microRNAs from Longitudinal Liquid Biopsies for the Prediction of Response to Induction Chemotherapy in High-Risk Neuroblastoma Patients: A Proof of Concept SIOPEN Study. Cancers, 2019, 11, 1476.	3.7	43
15	Peptide Trimming for MHC Class I Presentation by Endoplasmic Reticulum Aminopeptidases. Methods in Molecular Biology, 2019, 1988, 45-57.	0.9	4
16	Redundancy and Complementarity between ERAP1 and ERAP2 Revealed by their Effects on the Behcet's Disease-associated HLA-B*51 Peptidome*[S]. Molecular and Cellular Proteomics, 2019, 18, 1491-1510.	3.8	17
17	Regulation of ERAP1 and ERAP2 genes and their disfunction in human cancer. Human Immunology, 2019, 80, 318-324.	2.4	47
18	Counter-regulation of regulatory T cells by autoreactive CD8+ T cells in rheumatoid arthritis. Journal of Autoimmunity, 2019, 99, 81-97.	6.5	22

DORIANA FRUCI

#	Article	IF	CITATIONS
19	Tumor-infiltrating T cells and PD-L1 expression in childhood malignant extracranial germ-cell tumors. Oncolmmunology, 2019, 8, e1542245.	4.6	18
20	Role of genetic variations on MHC class I antigen-processing genes in human cancer and viral-mediated diseases. Molecular Immunology, 2019, 113, 11-15.	2.2	10
21	Influence of the Tumor Microenvironment on NK Cell Function in Solid Tumors. Frontiers in Immunology, 2019, 10, 3038.	4.8	245
22	The BET-bromodomain inhibitor JQ1 renders neuroblastoma cells more resistant to NK cell-mediated recognition and killing by downregulating ligands for NKG2D and DNAM-1 receptors. Oncotarget, 2019, 10, 2151-2160.	1.8	14
23	Abstract B37: Clinical relevance of tumor-infiltrating immune cells in neuroblastoma. , 2018, , .		0
24	PD-L1 Is a Therapeutic Target of the Bromodomain Inhibitor JQ1 and, Combined with HLA Class I, a Promising Prognostic Biomarker in Neuroblastoma. Clinical Cancer Research, 2017, 23, 4462-4472.	7.0	85
25	MYCN is an immunosuppressive oncogene dampening the expression of ligands for NK-cell-activating receptors in human high-risk neuroblastoma. Oncolmmunology, 2017, 6, e1316439.	4.6	33
26	Identification of a Genetic Variation in ERAP1 Aminopeptidase that Prevents Human Cytomegalovirus miR-UL112-5p-Mediated Immunoevasion. Cell Reports, 2017, 20, 846-853.	6.4	28
27	The Role of HCMV and HIV-1 MicroRNAs: Processing, and Mechanisms of Action during Viral Infection. Frontiers in Microbiology, 2017, 8, 689.	3.5	27
28	Drug Transporters and Multiple Drug Resistance in the Most Common Pediatric Solid Tumors. Current Drug Metabolism, 2016, 17, 308-316.	1.2	35
29	The MRN complex is transcriptionally regulated by MYCN during neural cell proliferation to control replication stress. Cell Death and Differentiation, 2016, 23, 197-206.	11.2	31
30	Peptide Loading on MHC Class I Molecules of Tumor Cells. Bio-protocol, 2016, 6, .	0.4	1
31	Killer Cell Ig-like Receptors (KIR)-Binding Assay for Tumor Cells. Bio-protocol, 2016, 6, .	0.4	0
32	A New Insight into Pediatric Leukemia: Che-1 Involvement in Oncogenic c-Myc Signaling. Blood, 2016, 128, 5267-5267.	1.4	0
33	ERAP1 Regulates Natural Killer Cell Function by Controlling the Engagement of Inhibitory Receptors. Cancer Research, 2015, 75, 824-834.	0.9	52
34	Tumor-infiltrating T lymphocytes improve clinical outcome of therapy-resistant neuroblastoma. Oncolmmunology, 2015, 4, e1019981.	4.6	105
35	A Role for Naturally Occurring Alleles of Endoplasmic Reticulum Aminopeptidases in Tumor Immunity and Cancer Pre-Disposition. Frontiers in Oncology, 2014, 4, 363.	2.8	56
36	Endoplasmic reticulum aminopeptidase 1 function and its pathogenic role in regulating innate and adaptive immunity in cancer and major histocompatibility complex class lâ€associated autoimmune diseases. Tissue Antigens, 2014, 84, 177-186.	1.0	32

Doriana Fruci

#	Article	IF	CITATIONS
37	T and NK cells: two sides of tumor immunoevasion. Journal of Translational Medicine, 2013, 11, 30.	4.4	29
38	Multidrug Resistance and Cancer Stem Cells in Neuroblastoma and Hepatoblastoma. International Journal of Molecular Sciences, 2013, 14, 24706-24725.	4.1	80
39	High-Resolution Array CCH Profiling Identifies Na/K Transporting ATPase Interacting 2 (NKAIN2) as a Predisposing Candidate Gene in Neuroblastoma. PLoS ONE, 2013, 8, e78481.	2.5	11
40	Case-control analysis of the <i>ERAP1</i> polymorphism rs30187 in Italian type 1 diabetes mellitus patients. Health, 2013, 05, 2150-2155.	0.3	4
41	Role of Endoplasmic Reticulum Aminopeptidases in Health and Disease: from Infection to Cancer. International Journal of Molecular Sciences, 2012, 13, 8338-8352.	4.1	84
42	Epigenetic Deregulation of MicroRNAs in Rhabdomyosarcoma and Neuroblastoma and Translational Perspectives. International Journal of Molecular Sciences, 2012, 13, 16554-16579.	4.1	11
43	Major Histocompatibility Complex Class I and Tumour Immuno-Evasion: How to Fool T Cells and Natural Killer Cells at One Time. Current Oncology, 2012, 19, 39-41.	2.2	34
44	ERAAP modulation: A possible novel strategy for cancer immunotherapy?. Oncolmmunology, 2012, 1, 81-82.	4.6	4
45	Expression of multidrug resistance-associated proteins in paediatric soft tissue sarcomas before and after chemotherapy. International Journal of Oncology, 2012, 41, 117-24.	3.3	4
46	The putative role of endoplasmic reticulum aminopeptidases in autoimmunity: Insights from genomic-wide association studies. Autoimmunity Reviews, 2012, 12, 281-288.	5.8	66
47	Hedgehog/hyaluronic acid interaction network in nonalcoholic fatty liver disease, fibrosis, and hepatocellular carcinoma. Hepatology, 2012, 56, 1589-1589.	7.3	6
48	IRF1 and NF-kB Restore MHC Class I-Restricted Tumor Antigen Processing and Presentation to Cytotoxic T Cells in Aggressive Neuroblastoma. PLoS ONE, 2012, 7, e46928.	2.5	69
49	Human hepatic stellate cells are liver-resident antigen-presenting cells. Hepatology, 2011, 54, 1107-1107.	7.3	4
50	Natural Killer Cells Efficiently Reject Lymphoma Silenced for the Endoplasmic Reticulum Aminopeptidase Associated with Antigen Processing. Cancer Research, 2011, 71, 1597-1606.	0.9	64
51	NF-κB, and not MYCN, Regulates MHC Class I and Endoplasmic Reticulum Aminopeptidases in Human Neuroblastoma Cells. Cancer Research, 2010, 70, 916-924.	0.9	65
52	HLA-E and the origin of immunogenic self HLA epitopes. Molecular Immunology, 2010, 47, 1661-1662.	2.2	6
53	Class I HLA Folding and Antigen Presentation in β2-Microglobulin-Defective Daudi Cells. Journal of Immunology, 2009, 182, 3609-3617.	0.8	20
54	Genetic risk factors in typical haemolytic uraemic syndrome. Nephrology Dialysis Transplantation, 2009, 24, 1851-1857.	0.7	22

DORIANA FRUCI

#	Article	IF	CITATIONS
55	Altered expression of endoplasmic reticulum aminopeptidases ERAP1 and ERAP2 in transformed nonâ€lymphoid human tissues. Journal of Cellular Physiology, 2008, 216, 742-749.	4.1	85
56	N-Linked Glycosylation Selectively Regulates the Generic Folding of HLA-Cw1. Journal of Biological Chemistry, 2008, 283, 16469-16476.	3.4	7
57	Antagomir-17-5p Abolishes the Growth of Therapy-Resistant Neuroblastoma through p21 and BIM. PLoS ONE, 2008, 3, e2236.	2.5	345
58	Effect of the [CCTG]n repeat expansion on ZNF9 expression in myotonic dystrophy type II (DM2). Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 329-334.	3.8	44
59	Assembly and selective "in synthesis―labeling of quenched fluorogenic protease substrates. Analytical Biochemistry, 2006, 357, 194-199.	2.4	6
60	Expression of Endoplasmic Reticulum Aminopeptidases in EBV-B Cell Lines from Healthy Donors and in Leukemia/Lymphoma, Carcinoma, and Melanoma Cell Lines. Journal of Immunology, 2006, 176, 4869-4879.	0.8	88
61	Impaired Assembly Results in the Accumulation of Multiple HLA-C Heavy Chain Folding Intermediates. Journal of Immunology, 2005, 175, 6651-6658.	0.8	11
62	Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum. Nature Immunology, 2005, 6, 689-697.	14.5	420
63	Angiotensin-converting enzyme (ACE) haplotypes and cyclosporine A (CsA) response: a model of the complex relationship between ACE quantitative trait locus and pathological phenotypes. Human Molecular Genetics, 2005, 14, 2357-2367.	2.9	7
64	Control of cross-presentation during dendritic cell maturation. European Journal of Immunology, 2004, 34, 398-407.	2.9	134
65	Quantifying Recruitment of Cytosolic Peptides for HLA Class I Presentation: Impact of TAP Transport. Journal of Immunology, 2003, 170, 2977-2984.	0.8	49
66	Beyond the proteasome: trimming, degradation and generation of MHC class I ligands by auxiliary proteases. Molecular Immunology, 2002, 39, 203-215.	2.2	66
67	Efficient MHC Class I-Independent Amino-Terminal Trimming of Epitope Precursor Peptides in the Endoplasmic Reticulum. Immunity, 2001, 15, 467-476.	14.3	83
68	Linkage analysis of multiple sclerosis with candidate region markers in Sardinian and Continental Italian families. European Journal of Human Genetics, 1999, 7, 377-385.	2.8	38
69	Characterization of antigenic peptides presented by HLA-B44 molecules on tumor cells expressing the geneMAGE-3. , 1996, 68, 622-628.		26
70	Differences in peptide-binding specificity of two ankylosing spondylitis-associated HLA-B27 subtypes. Immunogenetics, 1995, 42, 123-8.	2.4	13
71	Augmentation of the affinity of HLA class I-binding peptides lacking primary anchor residues by manipulation of the secondary anchor residues. Journal of Peptide Science, 1995, 1, 266-273.	1.4	7
72	The peptide binding specificity of HLA-B27 subtypes. Immunogenetics, 1994, 40, 192-198.	2.4	34

DORIANA FRUCI

#	Article	IF	CITATIONS
73	Exploring myelin basic protein for HLA class I-binding sequences. European Journal of Immunology, 1994, 24, 2196-2202.	2.9	7
74	The peptide-binding specificity of HLA-B27 subtype (Bâ^—2705) analyzed by the use of polyalanine model peptides. Human Immunology, 1994, 41, 34-38.	2.4	13
75	HLA-A2-binding peptides cross-react not only within the A2 subgroup but also with other HLA-A-Locus allelic products. Human Immunology, 1994, 39, 155-162.	2.4	33
76	The importance of secondary anchor residue motifs of HLA class I proteins: A chemometric approach. Molecular Immunology, 1994, 31, 549-554.	2.2	29
77	HLA class I binding of synthetic nonamer peptides carrying major anchor residue motifs of HLA-B27 (B*2705)-binding peptides. Immunogenetics, 1993, 38, 41-46.	2.4	20
78	Unfolded HLA class I $\hat{\rm l}\pm$ chains and their use in an assay of HLA class-I-peptide binding. Human Immunology, 1993, 36, 119-127.	2.4	19
79	Anchor residue motifs of HLA class-I-binding peptides analyzed by the direct binding of synthetic peptides to HLA class I \hat{I}_{\pm} chains. Human Immunology, 1993, 38, 187-192.	2.4	22
80	Anchor residue motifs of HLA class I-binding peptides analysed by the direct binding of synthetic peptides to HLA class I alpha chains. Human Immunology, 1993, 36, 67.	2.4	0
81	Global changes in gene expression inEscherichia coli K12 induced by bacteriophage Mu Gem protein. Research in Microbiology, 1991, 142, 13-21.	2.1	3