Xiaosheng Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8802356/publications.pdf

Version: 2024-02-01

4942 7496 23,757 175 84 151 citations h-index g-index papers 181 181 181 17998 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	ZnS nanostructures: From synthesis to applications. Progress in Materials Science, 2011, 56, 175-287.	16.0	1,134
2	New concept ultraviolet photodetectors. Materials Today, 2015, 18, 493-502.	8.3	661
3	An Ultrahigh Responsivity (9.7 mA W ^{â^'1}) Selfâ€Powered Solarâ€Blind Photodetector Based on Individual ZnOâ€"Ga ₂ O ₃ Heterostructures. Advanced Functional Materials, 2017, 27, 1700264.	7.8	616
4	Inorganic semiconductor nanostructures and their field-emission applications. Journal of Materials Chemistry, 2008, 18, 509-522.	6.7	586
5	Singleâ€Crystalline ZnS Nanobelts as Ultravioletâ€Light Sensors. Advanced Materials, 2009, 21, 2034-2039.	11.1	537
6	Nanostructured Photodetectors: From Ultraviolet to Terahertz. Advanced Materials, 2016, 28, 403-433.	11.1	492
7	A Comprehensive Review of One-Dimensional Metal-Oxide Nanostructure Photodetectors. Sensors, 2009, 9, 6504-6529.	2.1	491
8	Hierarchical MoS ₂ Nanosheet@TiO ₂ Nanotube Array Composites with Enhanced Photocatalytic and Photocurrent Performances. Small, 2016, 12, 1527-1536.	5.2	469
9	An Optimized Ultravioletâ€A Light Photodetector with Wideâ€Range Photoresponse Based on ZnS/ZnO Biaxial Nanobelt. Advanced Materials, 2012, 24, 2305-2309.	11.1	426
10	Lowâ€Dimensional Nanostructure Ultraviolet Photodetectors. Advanced Materials, 2013, 25, 5321-5328.	11.1	362
11	Photoelectric Detectors Based on Inorganic pâ€Type Semiconductor Materials. Advanced Materials, 2018, 30, e1706262.	11.1	344
12	Singleâ€Crystalline CdS Nanobelts for Excellent Fieldâ€Emitters and Ultrahigh Quantumâ€Efficiency Photodetectors. Advanced Materials, 2010, 22, 3161-3165.	11.1	342
13	High Performance BiOCl Nanosheets/TiO ₂ Nanotube Arrays Heterojunction UV Photodetector: The Influences of Selfâ€Induced Inner Electric Fields in the BiOCl Nanosheets. Advanced Functional Materials, 2018, 28, 1707178.	7.8	337
14	Novel Transparent and Selfâ€Powered UV Photodetector Based on Crossed ZnO Nanofiber Array Homojunction. Small, 2018, 14, e1703754.	5 . 2	332
15	Oneâ€Step Hydrothermal Synthesis of 2D Hexagonal Nanoplates of αâ€Fe ₂ O ₃ /Graphene Composites with Enhanced Photocatalytic Activity. Advanced Functional Materials, 2014, 24, 5719-5727.	7.8	331
16	Solar-Blind Avalanche Photodetector Based On Single ZnO–Ga ₂ O ₃ Core–Shell Microwire. Nano Letters, 2015, 15, 3988-3993.	4.5	331
17	Lowâ€Dimensional Metal Halide Perovskite Photodetectors. Advanced Materials, 2021, 33, e2003309.	11.1	319
18	Recent Developments in Oneâ€Dimensional Inorganic Nanostructures for Photodetectors. Advanced Functional Materials, 2010, 20, 4233-4248.	7.8	314

#	Article	IF	CITATIONS
19	Enhancing the Photoelectric Performance of Photodetectors Based on Metal Oxide Semiconductors by Chargeâ€Carrier Engineering. Advanced Functional Materials, 2019, 29, 1807672.	7.8	313
20	ZnO and ZnS Nanostructures: Ultraviolet-Light Emitters, Lasers, and Sensors. Critical Reviews in Solid State and Materials Sciences, 2009, 34, 190-223.	6.8	306
21	A Novel Sustainable Flour Derived Hierarchical Nitrogenâ€Doped Porous Carbon/Polyaniline Electrode for Advanced Asymmetric Supercapacitors. Advanced Energy Materials, 2016, 6, 1601111.	10.2	303
22	Selfâ€Powered MXene/GaN van der Waals Heterojunction Ultraviolet Photodiodes with Superhigh Efficiency and Stable Current Outputs. Advanced Materials, 2021, 33, e2101059.	11.1	302
23	A Realâ€Time Wearable UVâ€Radiation Monitor based on a Highâ€Performance pâ€CuZnS/nâ€TiO ₂ Photodetector. Advanced Materials, 2018, 30, e1803165.	11.1	300
24	Electrical Transport Properties of Large, Individual NiCo ₂ O ₄ Nanoplates. Advanced Functional Materials, 2012, 22, 998-1004.	7.8	297
25	ZnS Nanostructure Arrays: A Developing Material Star. Advanced Materials, 2011, 23, 585-598.	11.1	296
26	New Ultraviolet Photodetector Based on Individual Nb ₂ O ₅ Nanobelts. Advanced Functional Materials, 2011, 21, 3907-3915.	7.8	285
27	Materials and Designs for Wearable Photodetectors. Advanced Materials, 2019, 31, e1808138.	11.1	279
28	Ultrahigh External Quantum Efficiency from Thin SnO ₂ Nanowire Ultraviolet Photodetectors. Small, 2011, 7, 1012-1017.	5.2	278
29	Ultrasensitive Selfâ€Powered Solarâ€Blind Deepâ€Ultraviolet Photodetector Based on Allâ€Solidâ€State Polyaniline/MgZnO Bilayer. Small, 2016, 12, 5809-5816.	5.2	268
30	Recent Progress of Heterojunction Ultraviolet Photodetectors: Materials, Integrations, and Applications. Advanced Functional Materials, 2020, 30, 1909909.	7.8	264
31	Highâ€Performance Trifunctional Electrocatalysts Based on FeCo/Co ₂ P Hybrid Nanoparticles for Zinc–Air Battery and Selfâ€Powered Overall Water Splitting. Advanced Energy Materials, 2020, 10, 1903854.	10.2	259
32	Selfâ€Powered Ultraviolet Photodetectors Driven by Builtâ€In Electric Field. Small, 2017, 13, 1701687.	5.2	245
33	From nanofibers to ordered ZnO/NiO heterojunction arrays for self-powered and transparent UV photodetectors. Journal of Materials Chemistry C, 2019, 7, 223-229.	2.7	245
34	Controlled Growth from ZnS Nanoparticles to ZnS–CdS Nanoparticle Hybrids with Enhanced Photoactivity. Advanced Functional Materials, 2015, 25, 445-454.	7.8	239
35	Photo/Electrochemical Applications of Metal Sulfide/TiO ₂ Heterostructures. Advanced Energy Materials, 2020, 10, 1902355.	10.2	236
36	Switch type PANI/ZnO core-shell microwire heterojunction for UV photodetection. Journal of Materials Science and Technology, 2022, 105, 259-265.	5.6	230

#	Article	IF	CITATIONS
37	Synthesis and Development of Graphene–Inorganic Semiconductor Nanocomposites. Chemical Reviews, 2015, 115, 8294-8343.	23.0	227
38	An Efficient Way to Assemble ZnS Nanobelts as Ultravioletâ€Light Sensors with Enhanced Photocurrent and Stability. Advanced Functional Materials, 2010, 20, 500-508.	7.8	222
39	Energy Harvesting for Nanostructured Selfâ€Powered Photodetectors. Advanced Functional Materials, 2014, 24, 2591-2610.	7.8	217
40	High-Performance Silicon-Compatible Large-Area UV-to-Visible Broadband Photodetector Based on Integrated Lattice-Matched Type II Se/n-Si Heterojunctions. Nano Letters, 2018, 18, 4697-4703.	4.5	212
41	Efficient Selfâ∈Assembly Synthesis of Uniform CdS Spherical Nanoparticlesâ∈Au Nanoparticles Hybrids with Enhanced Photoactivity. Advanced Functional Materials, 2014, 24, 3725-3733.	7.8	211
42	2D Perovskite Sr ₂ Nb ₃ O ₁₀ for Highâ€Performance UV Photodetectors. Advanced Materials, 2020, 32, e1905443.	11.1	210
43	ZnO Hollow‧phere Nanofilmâ€Based Highâ€Performance and Lowâ€Cost Photodetector. Small, 2011, 7, 2449-2453.	5.2	209
44	Novel Composites of αâ€Fe ₂ O ₃ Tetrakaidecahedron and Graphene Oxide as an Effective Photoelectrode with Enhanced Photocurrent Performances. Advanced Functional Materials, 2016, 26, 3331-3339.	7.8	206
45	Novel UV–Visible Photodetector in Photovoltaic Mode with Fast Response and Ultrahigh Photosensitivity Employing Se/TiO ₂ Nanotubes Heterojunction. Small, 2017, 13, 1602448.	5.2	202
46	Silicon ompatible Photodetectors: Trends to Monolithically Integrate Photosensors with Chip Technology. Advanced Functional Materials, 2019, 29, 1808182.	7.8	198
47	Self-Powered Dual-Color UV–Green Photodetectors Based on SnO ₂ Millimeter Wire and Microwires/CsPbBr ₃ Particle Heterojunctions. Journal of Physical Chemistry Letters, 2019, 10, 836-841.	2.1	190
48	Structure and Cathodoluminescence of Individual ZnS/ZnO Biaxial Nanobelt Heterostructures. Nano Letters, 2008, 8, 2794-2799.	4.5	185
49	Binary response Se/ZnO pâ€n heterojunction UV photodetector with high on/off ratio and fast speed. Laser and Photonics Reviews, 2017, 11, 1600257.	4.4	177
50	Large scale, highly efficient and self-powered UV photodetectors enabled by all-solid-state n-TiO ₂ nanowell/p-NiO mesoporous nanosheet heterojunctions. Journal of Materials Chemistry C, 2016, 4, 10032-10039.	2.7	168
51	Self-powered UV photodetectors based on ZnO nanomaterials. Applied Physics Reviews, 2021, 8, .	5 . 5	167
52	Highly stable and spectrum-selective ultraviolet photodetectors based on lead-free copper-based perovskites. Materials Horizons, 2020, 7, 530-540.	6.4	164
53	MXeneâ€Contacted Silicon Solar Cells with 11.5% Efficiency. Advanced Energy Materials, 2019, 9, 1900180.	10.2	161
54	Novel Route to Feâ€Based Cathode as an Efficient Bifunctional Catalysts for Rechargeable Zn–Air Battery. Advanced Energy Materials, 2018, 8, 1800955.	10.2	146

#	Article	IF	CITATIONS
55	Application of Nanostructured TiO ₂ in UV Photodetectors: A Review. Advanced Materials, 2022, 34, e2109083.	11.1	145
56	General Fabrication of Monolayer SnO ₂ Nanonets for Highâ€Performance Ultraviolet Photodetectors. Advanced Functional Materials, 2012, 22, 1229-1235.	7.8	141
57	Scalable-Production, Self-Powered TiO ₂ Nanowell–Organic Hybrid UV Photodetectors with Tunable Performances. ACS Applied Materials & Samp; Interfaces, 2016, 8, 33924-33932.	4.0	136
58	Novel p–p Heterojunctions Selfâ€Powered Broadband Photodetectors with Ultrafast Speed and High Responsivity. Advanced Functional Materials, 2017, 27, 1703166.	7.8	136
59	Electrocatalytic nitrate/nitrite reduction to ammonia synthesis using metal nanocatalysts and bio-inspired metalloenzymes. Nano Energy, 2021, 86, 106088.	8.2	136
60	Stackingâ€Orderâ€Dependent Optoelectronic Properties of Bilayer Nanofilm Photodetectors Made From Hollow ZnS and ZnO Microspheres. Advanced Materials, 2012, 24, 5872-5877.	11.1	134
61	Thin SnO ₂ Nanowires with Uniform Diameter as Excellent Field Emitters: A Stability of More Than 2400 Minutes. Advanced Functional Materials, 2012, 22, 1613-1622.	7.8	134
62	Bio-inspired transparent MXene electrodes for flexible UV photodetectors. Materials Horizons, 2020, 7, 1828-1833.	6.4	134
63	Nickel Cobaltite Nanostructures for Photoelectric and Catalytic Applications. Small, 2015, 11, 4267-4283.	5.2	127
64	Piezoâ€Phototronic Effect Modulated Deep UV Photodetector Based on ZnOâ€Ga ₂ O ₃ Heterojuction Microwire. Advanced Functional Materials, 2018, 28, 1706379.	7.8	126
65	Facetâ€Dependent, Fast Response, and Broadband Photodetector Based on Highly Stable Allâ€Inorganic CsCu ₂ 1 ₃ Single Crystal with 1D Electronic Structure. Advanced Functional Materials, 2020, 30, 2002634.	7.8	126
66	Solutionâ€Processed Selfâ€Powered Transparent Ultraviolet Photodetectors with Ultrafast Response Speed for Highâ€Performance Communication System. Advanced Functional Materials, 2019, 29, 1809013.	7.8	123
67	Growth and Device Application of CdSe Nanostructures. Advanced Functional Materials, 2012, 22, 1551-1566.	7.8	122
68	Solution-processed one-dimensional CsCu ₂ 1 ₃ nanowires for polarization-sensitive and flexible ultraviolet photodetectors. Materials Horizons, 2020, 7, 1613-1622.	6.4	120
69	Broadband Photoresponse Enhancement of a Highâ€Performance <i>t</i> àê€e Microtube Photodetector by Plasmonic Metallic Nanoparticles. Advanced Functional Materials, 2016, 26, 6641-6648.	7.8	118
70	Enhanced Field Emission Performance of ZnO Nanorods by Two Alternative Approaches. Journal of Physical Chemistry C, 2007, 111, 12673-12676.	1.5	116
71	Supersaturationâ€Controlled Growth of Monolithically Integrated Leadâ€Free Halide Perovskite Singleâ€Crystalline Thin Film for Highâ€Sensitivity Photodetectors. Advanced Materials, 2021, 33, e2103010.	11.1	114
72	High Responsivity and High Rejection Ratio of Self-Powered Solar-Blind Ultraviolet Photodetector Based on PEDOT:PSS/β-Ga ₂ O ₃ Organic/Inorganic p–n Junction. Journal of Physical Chemistry Letters, 2019, 10, 6850-6856.	2.1	113

#	Article	IF	CITATIONS
73	A surface oxide thin layer of copper nanowires enhanced the UV selective response of a ZnO film photodetector. Journal of Materials Chemistry C, 2016, 4, 8416-8421.	2.7	111
74	ZnO Film UV Photodetector with Enhanced Performance: Heterojunction with CdMoO ₄ Microplates and the Hot Electron Injection Effect of Au Nanoparticles. Small, 2017, 13, 1702177.	5. 2	109
75	Hexagonal-like Nb2O5 Nanoplates-Based Photodetectors and Photocatalyst with High Performances. Scientific Reports, 2015, 5, 7716.	1.6	105
76	WO3 nanowires on carbon papers: electronic transport, improved ultraviolet-light photodetectors and excellent field emitters. Journal of Materials Chemistry, 2011, 21, 6525.	6.7	103
77	Millimeter-Sized Single-Crystal CsPbrB ₃ /Cul Heterojunction for High-Performance Self-Powered Photodetector. Journal of Physical Chemistry Letters, 2019, 10, 2400-2407.	2.1	99
78	High-Performance Two-Dimensional Perovskite Ca ₂ Nb ₃ O ₁₀ UV Photodetectors. Nano Letters, 2021, 21, 382-388.	4.5	98
79	New UVâ€A Photodetector Based on Individual Potassium Niobate Nanowires with High Performance. Advanced Optical Materials, 2014, 2, 771-778.	3.6	97
80	Improved Photoelectric Performance of UV Photodetector Based on ZnO Nanoparticleâ€Decorated BiOCl Nanosheet Arrays onto PDMS Substrate: The Heterojunction and Ti ₃ C ₂ Ti>sub>xMXene Conduction Layer. Advanced Electronic Materials, 2020, 6, 2000168.	2.6	94
81	Crystallinityâ€Controlled Germanium Nanowire Arrays: Potential Field Emitters. Advanced Functional Materials, 2008, 18, 1080-1088.	7.8	92
82	Fabrication of 1D Te/2D ReS ₂ Mixed-Dimensional van der Waals <i>p-n</i> Heterojunction for High-Performance Phototransistor. ACS Nano, 2021, 15, 3241-3250.	7.3	91
83	Orthogonal Lithography for Halide Perovskite Optoelectronic Nanodevices. ACS Nano, 2019, 13, 1168-1176.	7.3	90
84	Chemical Bath Deposition of p-Type Transparent, Highly Conducting (CuS) _{<i>x</i>} :(ZnS) _{1–<i>x</i>} Nanocomposite Thin Films and Fabrication of Si Heterojunction Solar Cells. Nano Letters, 2016, 16, 1925-1932.	4.5	89
85	One-dimensional inorganic semiconductor nanostructures: A new carrier for nanosensors. Pure and Applied Chemistry, 2010, 82, 2185-2198.	0.9	88
86	Shell-thickness dependent electron transfer and relaxation in type-II core–shell CdS/TiO ₂ structures with optimized photoelectrochemical performance. Journal of Materials Chemistry A, 2015, 3, 22627-22635.	5. 2	87
87	Selfâ€Powered n‧nO ₂ /p uZnS Core–Shell Microwire UV Photodetector with Optimized Performance. Advanced Optical Materials, 2018, 6, 1800213.	3.6	83
88	Novel Structure for High Performance UV Photodetector Based on BiOCl/ZnO Hybrid Film. Small, 2017, 13, 1700156.	5.2	81
89	Selfâ€Powered Flexible TiO ₂ Fibrous Photodetectors: Heterojunction with P3HT and Boosted Responsivity and Selectivity by Au Nanoparticles. Advanced Functional Materials, 2020, 30, 2001604.	7.8	81
90	Ultrafast Speed, Dark Current Suppression, and Self-Powered Enhancement in TiO ₂ -Based Ultraviolet Photodetectors by Organic Layers and Ag Nanowires Regulation. Journal of Physical Chemistry Letters, 2021, 12, 9912-9918.	2.1	79

#	Article	IF	CITATIONS
91	Design Principles and Material Engineering of ZnS for Optoelectronic Devices and Catalysis. Advanced Functional Materials, 2018, 28, 1802029.	7.8	77
92	Crystal orientation-ordered ZnS nanobelt quasi-arrays and their enhanced field-emission. Chemical Communications, 2007, , 3048.	2.2	76
93	Uniform carbon-coated CdS core–shell nanostructures: synthesis, ultrafast charge carrier dynamics, and photoelectrochemical water splitting. Journal of Materials Chemistry A, 2016, 4, 1078-1086.	5.2	75
94	Selfâ€Polarized BaTiO ₃ for Greatly Enhanced Performance of ZnO UV Photodetector by Regulating the Distribution of Electron Concentration. Advanced Functional Materials, 2020, 30, 1907650.	7.8	74
95	Efficiency enhancement of TiO ₂ self-powered UV photodetectors using a transparent Ag nanowire electrode. Journal of Materials Chemistry C, 2018, 6, 3334-3340.	2.7	71
96	Sizeâ€Controlled Graphene Nanodot Arrays/ZnO Hybrids for Highâ€Performance UV Photodetectors. Advanced Science, 2018, 5, 1700334.	5.6	70
97	An Allâ€Organic Selfâ€Powered Photodetector with Ultraflexible Dualâ€Polarity Output for Biosignal Detection. Advanced Materials, 2022, 34, .	11.1	70
98	Cathodoluminescence Modulation of ZnS Nanostructures by Morphology, Doping, and Temperature. Advanced Functional Materials, 2013, 23, 3701-3709.	7.8	69
99	Crossâ€Bar SnO ₂ â€NiO Nanofiberâ€Arrayâ€Based Transparent Photodetectors with High Detectivity. Advanced Electronic Materials, 2020, 6, 1901048.	2.6	68
100	Heteroepitaxial Growth of GaP/ZnS Nanocable with Superior Optoelectronic Response. Nano Letters, 2013, 13, 1941-1947.	4.5	67
101	Low-cost writing method for self-powered paper-based UV photodetectors utilizing Te/TiO ₂ and Te/ZnO heterojunctions. Nanoscale Horizons, 2019, 4, 452-456.	4.1	64
102	Three-dimensional helical inorganic thermoelectric generators and photodetectors for stretchable and wearable electronic devices. Journal of Materials Chemistry C, 2018, 6, 4866-4872.	2.7	63
103	Wavelengthâ€Tunable Electroluminescent Light Sources from Individual Gaâ€Doped ZnO Microwires. Small, 2017, 13, 1604034.	5.2	62
104	Perovskite-Type 2D Materials for High-Performance Photodetectors. Journal of Physical Chemistry Letters, 2022, 13, 1215-1225.	2.1	62
105	Interface Engineering Ti ₃ C ₂ MXene/Silicon Selfâ€Powered Photodetectors with High Responsivity and Detectivity for Weak Light Applications. Small, 2021, 17, e2100439.	5.2	61
106	High performance polarization-sensitive self-powered imaging photodetectors based on a p-Te/n-MoSe ₂ van der Waals heterojunction with strong interlayer transition. Materials Horizons, 2021, 8, 3113-3123.	6.4	61
107	Band Gap Tunable Zn2SnO4 Nanocubes through Thermal Effect and Their Outstanding Ultraviolet Light Photoresponse. Scientific Reports, 2014, 4, 6847.	1.6	60
108	A Paperâ€Based Wearable Photodetector for Simultaneous UV Intensity and Dosage Measurement. Advanced Functional Materials, 2021, 31, 2100026.	7.8	58

7

#	Article	IF	CITATIONS
109	Workâ€Functionâ€Tunable MXenes Electrodes to Optimize pâ€CsCu ₂ I ₃ /i>Ta <i>_{> Junction Photodetectors for Image Sensing and Logic Electronics. Advanced Functional Materials, 2022, 32, .}</i>	x <i><.</i> /sub> <th>>0₁₀</th>	>0 ₁₀
110	Fastâ∈Response, Highly Airâ∈Stable, and Waterâ∈Resistant Organic Photodetectors Based on a Singleâ∈Crystal Pt Complex. Advanced Materials, 2020, 32, e1904634.	11.1	56
111	Highly Desirable Photodetectors Derived from Versatile Plasmonic Nanostructures. Advanced Functional Materials, 2017, 27, 1704181.	7.8	54
112	Solutionâ€Processed Transparent Selfâ€Powered pâ€CuSâ€ZnS/nâ€ZnO UV Photodiode. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1700381.	1.2	54
113	Highâ€Performance SiC Nanobelt Photodetectors with Longâ€Term Stability Against 300 °C up to 180 Days. Advanced Functional Materials, 2019, 29, 1806250.	7.8	54
114	Robust and Stable Ratiometric Temperature Sensor Based on Zn–In–S Quantum Dots with Intrinsic Dualâ€Dopant Ion Emissions. Advanced Functional Materials, 2016, 26, 7224-7233.	7.8	53
115	Novel BeZnO Based Selfâ€Powered Dualâ€Color UV Photodetector Realized via a Oneâ€Step Fabrication Method. Laser and Photonics Reviews, 2017, 11, 1700222.	4.4	53
116	Designed growth and patterning of perovskite nanowires for lasing and wide color gamut phosphors with long-term stability. Nano Energy, 2020, 73, 104801.	8.2	53
117	Mechanically Compatible UV Photodetectors Based on Electrospun Freeâ€Standing Y ³⁺ â€Doped TiO ₂ Nanofibrous Membranes with Enhanced Flexibility. Advanced Functional Materials, 2020, 30, 2005291.	7.8	51
118	Recent advances toward environment-friendly photodetectors based on lead-free metal halide perovskites and perovskite derivatives. Materials Horizons, 2021, 8, 1367-1389.	6.4	46
119	Ultrathin 2D NbWO ₆ Perovskite Semiconductor Based Gas Sensors with Ultrahigh Selectivity under Low Working Temperature. Advanced Materials, 2022, 34, e2104958.	11.1	46
120	Tunable selfâ€powered n‧rTiO ₃ photodetectors based on varying CuSâ€ZnS nanocomposite film (pâ€CuZnS, pâ€CuS, and nâ€ZnS). InformaÄnÃ-Materiály, 2019, 1, 542-551.	8.5	44
121	A wearable helical organic–inorganic photodetector with thermoelectric generators as the power source. Journal of Materials Chemistry C, 2019, 7, 13097-13103.	2.7	41
122	CsPbI ₃ Nanotube Photodetectors with High Detectivity. Small, 2019, 15, e1905253.	5.2	41
123	Polarization Sensitive Solarâ€Blind Ultraviolet Photodetectors Based on Ultrawide Bandgap KNb ₃ O ₈ Nanobelt with Fringeâ€Like Atomic Lattice. Advanced Functional Materials, 2022, 32, .	7.8	41
124	Si nanowire semisphere-like ensembles as field emitters. Chemical Communications, 2007, , 4093.	2.2	40
125	Transparent Schottky Photodiode Based on AgNi NWs/SrTiO ₃ Contact with an Ultrafast Photoresponse to Shortâ€Wavelength Blue Light and UVâ€Shielding Effect. Advanced Functional Materials, 2019, 29, 1905923.	7.8	40
126	Thermal stability of CsPbBr3 perovskite as revealed by <i>in situ</i> transmission electron microscopy. APL Materials, 2019, 7, .	2.2	39

#	Article	IF	Citations
127	UV Photodetectors Based on BiOCl Nanosheet Arrays: The Effects of Morphologies and Electrode Configurations. Small, 2018, 14, e1801611.	5.2	38
128	CdS/CdSO ₄ Nanoflower-Based Photodetector with Enhanced Photoelectric Performances. ACS Applied Nano Materials, 2020, 3, 10190-10199.	2.4	37
129	Two-dimensional Ti ₃ C ₂ MXene-based nanostructures for emerging optoelectronic applications. Materials Horizons, 2021, 8, 2929-2963.	6.4	37
130	Solutionâ€Processed Transparent Sn ⁴⁺ â€Doped CuI Hybrid Photodetectors with Enhanced Performances. Advanced Materials Interfaces, 2019, 6, 1900669.	1.9	36
131	Wearable and Ultrasensitive Strain Sensor Based on Highâ€Quality GaN pn Junction Microwire Arrays. Small, 2020, 16, e1907461.	5.2	35
132	Highly UV Resistant Inchâ€Scale Hybrid Perovskite Quantum Dot Papers. Advanced Science, 2020, 7, 1902439.	5.6	33
133	Dualâ€Band Perovskite Bulk Heterojunction Selfâ€Powered Photodetector for Encrypted Communication and Imaging. Advanced Optical Materials, 2022, 10, .	3.6	33
134	Allâ€Solidâ€State Onâ€Chip Supercapacitors Based on Freeâ€Standing 4 <i>H</i> à€SiC Nanowire Arrays. Advance Energy Materials, 2019, 9, 1900073.	$ced_{0.2}$	32
135	Novel Ωâ€Shaped Core–Shell Photodetector with High Ultraviolet Selectivity and Enhanced Responsivity. Advanced Functional Materials, 2017, 27, 1704477.	7.8	29
136	Constructing the Band Alignment of Graphitic Carbon Nitride (g-C ₃ N ₄)/Copper(I) Oxide (Cu ₂ O) Composites by Adjusting the Contact Facet for Superior Photocatalytic Activity. ACS Applied Energy Materials, 2019, 2, 1803-1811.	2.5	29
137	Boosted Responsivity and Tunable Spectral Response in Bâ€Site Substituted 2D Ca ₂ Nb _{3â^'} <i>_x</i> Perovskite Photodetectors. Advanced Functional Materials, 2021, 31, 2101480.	7.8	29
138	Facile fabrication of heterostructure with p-BiOCl nanoflakes and n-ZnO thin film for UV photodetectors. Journal of Semiconductors, 2021, 42, 052301.	2.0	29
139	Doping Concentration Influenced Pyroâ€Phototronic Effect in Selfâ€Powered Photodetector Based on Gaâ€Incorporated ZnO Microwire/p ⁺ â€GaN Heterojunction. Advanced Optical Materials, 2022, 10, 2101851.	3.6	29
140	Solutionâ€Growth Strategy for Largeâ€Scale "CuGaO ₂ Nanoplate/ZnS Microsphere― Heterostructure Arrays with Enhanced UV Adsorption and Optoelectronic Properties. Advanced Functional Materials, 2017, 27, 1701066.	7.8	27
141	Enhanced Electrical Properties of Lithography-Free Fabricated MoS ₂ Field Effect Transistors with Chromium Contacts. Journal of Physical Chemistry Letters, 2021, 12, 2705-2711.	2.1	26
142	Rose-like CuS microflowers and their enhanced visible-light photocatalytic performance. CrystEngComm, 2018, 20, 6529-6537.	1.3	24
143	Humidityâ€Dependent Characteristics of Fewâ€Layer MoS ₂ Field Effect Transistors. Advanced Electronic Materials, 2020, 6, 2000659.	2.6	23
144	Ultralight and robust carbon nanofiber aerogels for advanced energy storage. Journal of Materials Chemistry A, 2021, 9, 900-907.	5.2	23

#	Article	IF	Citations
145	Ultrafine CoP <i></i> Nanoparticles Anchored on Nitrogen Doped Reduced Graphene Oxides for Superior Hydrogenation in Alkaline Media. Advanced Materials Interfaces, 2018, 5, 1800515.	1.9	22
146	Back-to-back symmetric Schottky type UVA photodetector based on ternary alloy BeZnO. Journal of Materials Chemistry C, 2018, 6, 7776-7782.	2.7	21
147	A transparent, self-powered photodetector based on p-CuI/n-TiO ₂ heterojunction film with high on–off ratio. Nanotechnology, 2022, 33, 105202.	1.3	20
148	Integration of filter membrane and Ca2Nb3O10 nanosheets for high performance flexible UV photodetectors. Journal of Materials Science and Technology, 2022, 129, 108-114.	5.6	20
149	Raman selection rule for surface optical phonons in ZnS nanobelts. Nanoscale, 2016, 8, 5954-5958.	2.8	18
150	Highly Crystallized Tin Dioxide Microwires toward Ultraviolet Photodetector and Humidity Sensor with High Performances. Advanced Electronic Materials, 2021, 7, 2100706.	2.6	16
151	Supersaturation ontrolled Growth of Monolithically Integrated Leadâ€Free Halide Perovskite Single rystalline Thin Film for High‧ensitivity Photodetectors (Adv. Mater. 41/2021). Advanced Materials, 2021, 33, 2170324.	11.1	16
152	Flexible 2D Cu Metal: Organic Framework@MXene Film Electrode with Excellent Durability for Highly Selective Electrocatalytic NH ₃ Synthesis. Research, 2022, 2022, .	2.8	16
153	Oil/water interfacial self-assembly for the organization of hydrophobic NaYF4:Yb, Er nanoplatelets into closely-packed fluorescent nanofilms. Journal of Materials Chemistry, 2012, 22, 944-950.	6.7	15
154	Flexible electrocatalysts: interfacial-assembly of iron nanoparticles for nitrate reduction. Chemical Communications, 2021, 57, 6740-6743.	2.2	15
155	Dramatic Responsivity Enhancement Through Concentrated H ₂ SO ₄ Treatment on PEDOT:PSS/TiO ₂ Heterojunction Fibrous Photodetectors. Small, 2021, 17, e2101674.	5.2	15
156	Cathodoluminescence and Photoconductive Characteristics of Singleâ€Crystal Ternary CdS/CdSe/CdS Biaxial Nanobelts. Small, 2015, 11, 1531-1536.	5.2	14
157	Tailoring the interface assembly of mesoporous TiO ₂ on BTO film toward high-performance UV photodetectors. Journal of Materials Chemistry C, 2022, 10, 9035-9043.	2.7	14
158	Effect of solvent and environmental conditions on the structural and optical properties of CdS nanoparticles. RSC Advances, 2014, 4, 24110-24118.	1.7	13
159	Roomâ€Temperature Crystallization of Ultralong (â‰^3.5Âmm) CsCu ₂ 1 ₃ Microbelt to Suppress Carrier Recombination for Highâ€Performance UV Heterojunction Photodetector. Advanced Optical Materials, 2022, 10, .	3.6	10
160	Pineâ∈Branchâ∈Like SnO ₂ /ZnO Heterostructure with Suppressed Dark Current and Enhanced On/Off Ratio for Visibleâ∈Blind UV Imaging. Advanced Electronic Materials, 2022, 8, .	2.6	8
161	Solar Cells: MXeneâ€Contacted Silicon Solar Cells with 11.5% Efficiency (Adv. Energy Mater. 22/2019). Advanced Energy Materials, 2019, 9, 1970083.	10.2	7
162	Structural evolution of Ag/BN hybrids via a polyol-assisted fabrication process and their catalytic activity in CO oxidation. Catalysis Science and Technology, 2019, 9, 6460-6470.	2.1	7

#	Article	IF	CITATIONS
163	Crystallography-derived optoelectronic and photovoltaic properties of CsPbBr3 perovskite single crystals as revealed by in situ transmission electron microscopy. Applied Materials Today, 2020, 20, 100788.	2.3	7
164	Amorphous MoSxOy/h-BNxOy Nanohybrids: Synthesis and Dye Photodegradation. Nanomaterials, 2021, 11, 3232.	1.9	6
165	Photodetectors: Design Principles and Material Engineering of ZnS for Optoelectronic Devices and Catalysis (Adv. Funct. Mater. 36/2018). Advanced Functional Materials, 2018, 28, 1870256.	7.8	4
166	Semiconductors: Controlled Growth from ZnS Nanoparticles to ZnS–CdS Nanoparticle Hybrids with Enhanced Photoactivity (Adv. Funct. Mater. 3/2015). Advanced Functional Materials, 2015, 25, 495-495.	7.8	3
167	Onâ€Chip Supercapacitors: Allâ€Solidâ€State Onâ€Chip Supercapacitors Based on Freeâ€Standing 4 <i>H</i> à€S Nanowire Arrays (Adv. Energy Mater. 17/2019). Advanced Energy Materials, 2019, 9, 1970060.	5iC 10.2	3
168	An Optimized Ultraviolet-A Light Photodetector with Wide-Range Photoresponse Based on ZnS/ZnO Biaxial Nanobelt (Adv. Mater. 17/2012). Advanced Materials, 2012, 24, 2304-2304.	11.1	2
169	Organic Semiconductors: Fastâ€Response, Highly Airâ€Stable, and Waterâ€Resistant Organic Photodetectors Based on a Singleâ€Crystal Pt Complex (Adv. Mater. 2/2020). Advanced Materials, 2020, 32, 2070015.	11.1	2
170	Lightâ€Emitting Devices: Wavelengthâ€Tunable Electroluminescent Light Sources from Individual Gaâ€Doped ZnO Microwires (Small 19/2017). Small, 2017, 13, .	5.2	1
171	Transparent Electronics: Solutionâ€Processed Selfâ€Powered Transparent Ultraviolet Photodetectors with Ultrafast Response Speed for Highâ€Performance Communication System (Adv. Funct. Mater.) Tj ETQq1 1 0.	. 784 314 ı	gBT /Overloc
172	Transparent Schottky Photodiodes: Transparent Schottky Photodiode Based on AgNi NWs/SrTiO ₃ Contact with an Ultrafast Photoresponse to Shortâ€Wavelength Blue Light and UVâ€Shielding Effect (Adv. Funct. Mater. 46/2019). Advanced Functional Materials, 2019, 29, 1970319.	7.8	1
173	Doping Concentration Influenced Pyroâ€Phototronic Effect in Selfâ€Powered Photodetector Based on Gaâ€Incorporated ZnO Microwire/p ⁺ â€GaN Heterojunction (Advanced Optical Materials) Tj ETQq1 1	. 37 8431	4 i gBT /Overl
174	Zinc Sulfide Nanostructure Arrays: ZnS Nanostructure Arrays: A Developing Material Star (Adv.) Tj ETQq0 0 0 rgBT	- Overloc	k 10 Tf 50 30

Flexible Devices: Extremely Stable Current Emission of P-Doped SiC Flexible Field Emitters (Adv. Sci.) Tj ETQq $1\ 1\ 0.784314\ rgBT$ /Overloading Devices: Extremely Stable Current Emission of P-Doped SiC Flexible Field Emitters (Adv. Sci.) Tj ETQq $1\ 1\ 0.784314$ rgBT /Overloading Flexible Devices: Extremely Stable Current Emission of P-Doped SiC Flexible Field Emitters (Adv. Sci.) Tj ETQq $1\ 1\ 0.784314$ rgBT /Overloading Flexible Field Emitters (Adv. Sci.) Tj ETQq $1\ 1\ 0.784314$ rgBT /Overloading Flexible Flexible Field Emitters (Adv. Sci.) Tj ETQq $1\ 1\ 0.784314$ rgBT /Overloading Flexible Flexible Field Emitters (Adv. Sci.) Tj ETQq $1\ 1\ 0.784314$ rgBT /Overloading Flexible Flexibl

11