
Berend Snijder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8801983/publications.pdf Version: 2024-02-01

REDEND SNUDED

#	Article	IF	CITATIONS
1	Functional Precision Medicine Provides Clinical Benefit in Advanced Aggressive Hematologic Cancers and Identifies Exceptional Responders. Cancer Discovery, 2022, 12, 372-387.	9.4	77
2	The Tumor Profiler Study: integrated, multi-omic, functional tumor profiling for clinical decision support. Cancer Cell, 2021, 39, 288-293.	16.8	71
3	Allosteric Antagonist Modulation of TRPV2 by Piperlongumine Impairs Glioblastoma Progression. ACS Central Science, 2021, 7, 868-881.	11.3	34
4	Light-mediated discovery of surfaceome nanoscale organization and intercellular receptor interaction networks. Nature Communications, 2021, 12, 7036.	12.8	33
5	Kinase Interaction Network Expands Functional and Disease Roles of Human Kinases. Molecular Cell, 2020, 79, 504-520.e9.	9.7	74
6	SCIM: universal single-cell matching with unpaired feature sets. Bioinformatics, 2020, 36, i919-i927.	4.1	37
7	Treatment Guided By Next Generation Functional Drug Screening Provides Clinical Benefit in Advanced Aggressive Hematological Malignancies: Final Evaluation of the Open Label, Single Arm Exalt Trial. Blood, 2020, 136, 2-4.	1.4	1
8	Common Nodes of Virus–Host Interaction Revealed Through an Integrated Network Analysis. Frontiers in Immunology, 2019, 10, 2186.	4.8	67
9	Combined chemosensitivity and chromatin profiling prioritizes drug combinations in CLL. Nature Chemical Biology, 2019, 15, 232-240.	8.0	34
10	Human "T _H 9―cells are a subpopulation of PPAR-γ ⁺ T _H 2 cells. Science Immunology, 2019, 4, .	11.9	75
11	Global survey of the immunomodulatory potential of common drugs. Nature Chemical Biology, 2017, 13, 681-690.	8.0	53
12	Image-based ex-vivo drug screening for patients with aggressive haematological malignancies: interim results from a single-arm, open-label, pilot study. Lancet Haematology,the, 2017, 4, e595-e606.	4.6	130
13	Next-Generation Functional Drug Screening for Patients with Aggressive Hematologic Malignancies. Blood, 2017, 130, 855-855.	1.4	0
14	A time-resolved molecular map of the macrophage response to VSV infection. Npj Systems Biology and Applications, 2016, 2, 16027.	3.0	42
15	SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature, 2015, 519, 477-481.	27.8	561
16	A Call for Systematic Research on Solute Carriers. Cell, 2015, 162, 478-487.	28.9	457
17	The Lipid-Modifying Enzyme SMPDL3B Negatively Regulates Innate Immunity. Cell Reports, 2015, 11, 1919-1928.	6.4	74
18	A Conserved Circular Network of Coregulated Lipids Modulates Innate Immune Responses. Cell, 2015, 162, 170-183.	28.9	181

BEREND SNIJDER

#	Article	IF	CITATIONS
19	Wnt directs the endosomal flux of <scp>LDL</scp> â€derived cholesterol and lipid droplet homeostasis. EMBO Reports, 2015, 16, 741-752.	4.5	43
20	Human Haploid Cell Genetics Reveals Roles for Lipid Metabolism Genes in Nonapoptotic Cell Death. ACS Chemical Biology, 2015, 10, 1604-1609.	3.4	629
21	KPC1-Mediated Ubiquitination and Proteasomal Processing of NF-κB1 p105 to p50 Restricts Tumor Growth. Cell, 2015, 161, 333-347.	28.9	89
22	Single-cell and multivariate approaches in genetic perturbation screens. Nature Reviews Genetics, 2015, 16, 18-32.	16.3	80
23	Large Scale RNAi Reveals the Requirement of Nuclear Envelope Breakdown for Nuclear Import of Human Papillomaviruses. PLoS Pathogens, 2014, 10, e1004162.	4.7	135
24	Simultaneous analysis of large-scale RNAi screens for pathogen entry. BMC Genomics, 2014, 15, 1162.	2.8	38
25	Toward effective sharing of high-dimensional immunology data. Nature Biotechnology, 2014, 32, 755-759.	17.5	11
26	A Hierarchical Map of Regulatory Genetic Interactions in Membrane Trafficking. Cell, 2014, 157, 1473-1487.	28.9	93
27	Predicting functional gene interactions with the hierarchical interaction score. Nature Methods, 2013, 10, 1089-1092.	19.0	27
28	Singleâ€cell analysis of population context advances RNAi screening at multiple levels. Molecular Systems Biology, 2012, 8, 579.	7.2	153
29	RNAi Screening Reveals Proteasome- and Cullin3-Dependent Stages in Vaccinia Virus Infection. Cell Reports, 2012, 2, 1036-1047.	6.4	139
30	RNAi screen of <i>Salmonella</i> invasion shows role of COPI in membrane targeting of cholesterol and Cdc42. Molecular Systems Biology, 2011, 7, 474.	7.2	89
31	Origins of regulated cell-to-cell variability. Nature Reviews Molecular Cell Biology, 2011, 12, 119-125.	37.0	307
32	CellClassifier: supervised learning of cellular phenotypes. Bioinformatics, 2009, 25, 3028-3030.	4.1	81
33	Population context determines cell-to-cell variability in endocytosis and virus infection. Nature, 2009, 461, 520-523.	27.8	371
34	The Arabidopsis LHP1 protein is a component of euchromatin. Planta, 2005, 222, 910-925.	3.2	104