Maria Carmela Roccheri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8801979/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
3	Marine Invertebrates as Bioindicators of Heavy Metal Pollution. Open Journal of Metal, 2014, 04, 93-106.	0.7	109
4	Cadmium induces the expression of specific stress proteins in sea urchin embryos. Biochemical and Biophysical Research Communications, 2004, 321, 80-87.	2.1	96
5	Sea urchin embryos as an in vivo model for the assessment of manganese toxicity: developmental and stress response effects. Ecotoxicology, 2010, 19, 555-562.	2.4	76
6	Heavy Metals and Metalloids as Autophagy Inducing Agents: Focus on Cadmium and Arsenic. Cells, 2012, 1, 597-616.	4.1	76
7	Manganese Interferes with Calcium, Perturbs ERK Signaling, and Produces Embryos with No Skeleton. Toxicological Sciences, 2011, 123, 217-230.	3.1	64
8	Sea urchin embryos as a model system for studying autophagy induced by cadmium stress. Autophagy, 2011, 7, 1028-1034.	9.1	48
9	Environmentally relevant cadmium concentrations affect development and induce apoptosis of Paracentrotus lividus larvae cultured in vitro. Cell Biology and Toxicology, 2008, 24, 603-610.	5.3	47
10	Apoptosis: focus on sea urchin development. Apoptosis: an International Journal on Programmed Cell Death, 2010, 15, 322-330.	4.9	46
11	Autophagy as a defense strategy against stress: focus on Paracentrotus lividus sea urchin embryos exposed to cadmium. Cell Stress and Chaperones, 2016, 21, 19-27.	2.9	46
12	Cadmium induces an apoptotic response in sea urchin embryos. Cell Stress and Chaperones, 2007, 12, 44.	2.9	42
13	Sperm DNA fragmentation: An early and reliable marker of air pollution. Environmental Toxicology and Pharmacology, 2018, 58, 243-249.	4.0	41
14	Gadolinium perturbs expression of skeletogenic genes, calcium uptake and larval development in phylogenetically distant sea urchin species. Aquatic Toxicology, 2018, 194, 57-66.	4.0	38
15	Cadmium stress effects indicating marine pollution in different species of sea urchin employed as environmental bioindicators. Cell Stress and Chaperones, 2019, 24, 675-687.	2.9	37
16	Effects of cadmium exposure on sea urchin development assessed by SSH and RT-qPCR: metallothionein genes and their differential induction. Molecular Biology Reports, 2013, 40, 2157-2167.	2.3	34
17	Apoptosis in Sea Urchin Embryos. Biochemical and Biophysical Research Communications, 1997, 240, 359-366.	2.1	26
18	Induction of skeletal abnormalities and autophagy in Paracentrotus lividus sea urchin embryos exposed to gadolinium. Marine Environmental Research. 2017, 130, 12-20.	2.5	24

#	Article	IF	Citations
19	Autophagy is required for sea urchin oogenesis and early development. Zygote, 2016, 24, 918-926.	1.1	22
20	Interactive effects of increased temperature and gadolinium pollution in Paracentrotus lividus sea urchin embryos: a climate change perspective. Aquatic Toxicology, 2021, 232, 105750.	4.0	14
21	Toxic effects induced by vanadium on sea urchin embryos. Chemosphere, 2021, 274, 129843.	8.2	12
22	Effects of magnesium deprivation on development and biomineralization in the sea urchin <i>Arbacia lixula</i> . Invertebrate Reproduction and Development, 2019, 63, 165-176.	0.8	10
23	Toxicological Impact of Rare Earth Elements (REEs) on the Reproduction and Development of Aquatic Organisms Using Sea Urchins as Biological Models. International Journal of Molecular Sciences, 2022, 23, 2876.	4.1	10
24	Vanadium Toxicity Monitored by Fertilization Outcomes and Metal Related Proteolytic Activities in Paracentrotus lividus Embryos. Toxics, 2022, 10, 83.	3.7	4
25	Toxicity of Vanadium during Development of Sea Urchin Embryos: Bioaccumulation, Calcium Depletion, ERK Modulation and Cell-Selective Apoptosis. International Journal of Molecular Sciences, 2022, 23, 6239.	4.1	3