
Richard L Faull

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8801644/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Identifying Neural Progenitor Cells in the Adult Human Brain. Methods in Molecular Biology, 2022, 2389, 125-154.	0.4	2
2	Lamina-specific immunohistochemical signatures in the olfactory bulb of healthy, Alzheimer's and Parkinson's disease patients. Communications Biology, 2022, 5, 88.	2.0	16
3	iGluR expression in the hippocampal formation, entorhinal cortex, and superior temporal gyrus in Alzheimer's disease. Neural Regeneration Research, 2022, 17, 2197.	1.6	0
4	Characterization of volumetric growth of intracranial meningiomas in MÄori and Pasifika populations in New Zealand. ANZ Journal of Surgery, 2022, , .	0.3	0
5	Neutrophil-vascular interactions drive myeloperoxidase accumulation in the brain in Alzheimer's disease. Acta Neuropathologica Communications, 2022, 10, 38.	2.4	42
6	Characterisation of PDGF-BB:PDGFRβ signalling pathways in human brain pericytes: evidence of disruption in Alzheimer's disease. Communications Biology, 2022, 5, 235.	2.0	20
7	Beta-Amyloid (Aβ1-42) Increases the Expression of NKCC1 in the Mouse Hippocampus. Molecules, 2022, 27, 2440.	1.7	9
8	Current and Possible Future Therapeutic Options for Huntington's Disease. Journal of Central Nervous System Disease, 2022, 14, 117957352210925.	0.7	25
9	Neuroprotective Effect of Caffeine in Alzheimer's Disease. Molecules, 2022, 27, 3737.	1.7	12
10	Neuroimaging and neuropathology studies of X-linked dystonia parkinsonism. Neurobiology of Disease, 2021, 148, 105186.	2.1	18
11	Promise and challenges of dystonia brain banking: establishing a human tissue repository for studies of X-Linked Dystonia-Parkinsonism. Journal of Neural Transmission, 2021, 128, 575-587.	1.4	4
12	The effects of amyloid-beta on hippocampal glutamatergic receptor and transporter expression. Neural Regeneration Research, 2021, 16, 1399.	1.6	6
13	Therapeutic potential of alpha 5 subunit containing GABA _A receptors in Alzheimer's disease. Neural Regeneration Research, 2021, 16, 1550.	1.6	4
14	Cardiac glycosides target barrier inflammation of the vasculature, meninges and choroid plexus. Communications Biology, 2021, 4, 260.	2.0	18
15	fISHing with immunohistochemistry for housekeeping gene changes in Alzheimer's disease using an automated quantitative analysis workflow. Journal of Neurochemistry, 2021, 157, 1270-1283.	2.1	5
16	Preparation, construction and high-throughput automated analysis of human brain tissue microarrays for neurodegenerative disease drug development. Nature Protocols, 2021, 16, 2308-2343.	5.5	9
17	An imaging mass spectrometry atlas of lipids in the human neurologically normal and Huntington's disease caudate nucleus. Journal of Neurochemistry, 2021, 157, 2158-2172.	2.1	18
18	The autocrine regulation of insulin-like growth factor-1 in human brain of Alzheimer's disease. Psychoneuroendocrinology, 2021, 127, 105191.	1.3	5

#	Article	IF	CITATIONS
19	Glutamatergic receptor expression changes in the Alzheimer's disease hippocampus and entorhinal cortex. Brain Pathology, 2021, 31, e13005.	2.1	23
20	Blood-spinal cord barrier leakage is independent of motor neuron pathology in ALS. Acta Neuropathologica Communications, 2021, 9, 144.	2.4	24
21	A Multi-Omic Huntington's Disease Transgenic Sheep-Model Database for Investigating Disease Pathogenesis. Journal of Huntington's Disease, 2021, 10, 423-434.	0.9	6
22	EAAT2 Expression in the Hippocampus, Subiculum, Entorhinal Cortex and Superior Temporal Gyrus in Alzheimer's Disease. Frontiers in Cellular Neuroscience, 2021, 15, 702824.	1.8	8
23	Single-cell image analysis reveals a protective role for microglia in glioblastoma. Neuro-Oncology Advances, 2021, 3, vdab031.	0.4	22
24	RNA Quality in Post-mortem Human Brain Tissue Is Affected by Alzheimer's Disease. Frontiers in Molecular Neuroscience, 2021, 14, 780352.	1.4	8
25	The Acute Effects of Amyloid-Beta1–42 on Glutamatergic Receptor and Transporter Expression in the Mouse Hippocampus. Frontiers in Neuroscience, 2020, 13, 1427.	1.4	27
26	Huntingtin Aggregates in the Olfactory Bulb in Huntington's Disease. Frontiers in Aging Neuroscience, 2020, 12, 261.	1.7	16
27	Inconsistencies in histone acetylation patterns among different HD model systems and HD post-mortem brains. Neurobiology of Disease, 2020, 146, 105092.	2.1	5
28	Identification of a dysfunctional microglial population in human Alzheimer's disease cortex using novel single-cell histology image analysis. Acta Neuropathologica Communications, 2020, 8, 170.	2.4	47
29	The unfolded protein response is activated in the olfactory system in Alzheimer's disease. Acta Neuropathologica Communications, 2020, 8, 109.	2.4	22
30	Impaired Expression of GABA Signaling Components in the Alzheimer's Disease Middle Temporal Gyrus. International Journal of Molecular Sciences, 2020, 21, 8704.	1.8	34
31	Quantitative immunohistochemical analysis of myeloid cell marker expression in human cortex captures microglia heterogeneity with anatomical context. Scientific Reports, 2020, 10, 11693.	1.6	33
32	Isolation and culture of functional adult human neurons from neurosurgical brain specimens. Brain Communications, 2020, 2, fcaa171.	1.5	13
33	Cerebral deficiency of vitamin B5 (d-pantothenic acid; pantothenate) as a potentially-reversible cause of neurodegeneration and dementia in sporadic Alzheimer's disease. Biochemical and Biophysical Research Communications, 2020, 527, 676-681.	1.0	49
34	Amyloidâ€beta _{1–42} induced glutamatergic receptor and transporter expression changes in the mouse hippocampus. Journal of Neurochemistry, 2020, 155, 62-80.	2.1	17
35	ALS/FTD mutations in UBQLN2 impede autophagy by reducing autophagosome acidification through loss of function. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15230-15241.	3.3	53
36	Amyloid-Beta1-42 -Induced Increase in GABAergic Tonic Conductance in Mouse Hippocampal CA1 Pyramidal Cells. Molecules, 2020, 25, 693.	1.7	15

#	Article	IF	CITATIONS
37	α-synuclein inclusions are abundant in non-neuronal cells in the anterior olfactory nucleus of the Parkinson's disease olfactory bulb. Scientific Reports, 2020, 10, 6682.	1.6	42
38	TBK1 phosphorylates mutant Huntingtin and suppresses its aggregation and toxicity in Huntington's disease models. EMBO Journal, 2020, 39, e104671.	3.5	34
39	Vascular dysfunction in Alzheimer's disease: a biomarker of disease progression and a potential therapeutic target. Neural Regeneration Research, 2020, 15, 1030.	1.6	15
40	Cerebral Vitamin B5 (D-Pantothenic Acid) Deficiency as a Potential Cause of Metabolic Perturbation and Neurodegeneration in Huntington's Disease. Metabolites, 2019, 9, 113.	1.3	47
41	The Role of Microglia and Astrocytes in Huntington's Disease. Frontiers in Molecular Neuroscience, 2019, 12, 258.	1.4	128
42	Altered microglia and neurovasculature in the Alzheimer's disease cerebellum. Neurobiology of Disease, 2019, 132, 104589.	2.1	36
43	Chemical neuroanatomy of the substantia nigra in the ovine brain. Journal of Chemical Neuroanatomy, 2019, 97, 43-56.	1.0	9
44	<i>Porphyromonas gingivalis</i> in Alzheimer's disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Science Advances, 2019, 5, eaau3333.	4.7	1,152
45	Regional protein expression in human Alzheimer's brain correlates with disease severity. Communications Biology, 2019, 2, 43.	2.0	136
46	Vascular Dysfunction in Alzheimer's Disease: A Prelude to the Pathological Process or a Consequence of It?. Journal of Clinical Medicine, 2019, 8, 651.	1.0	131
47	Cell-Type-Specific Gene Expression Profiling in Adult Mouse Brain Reveals Normal and Disease-State Signatures. Cell Reports, 2019, 26, 2477-2493.e9.	2.9	55
48	Sex- and age-related changes in GABA signaling components in the human cortex. Biology of Sex Differences, 2019, 10, 5.	1.8	60
49	Cerebellar degeneration correlates with motor symptoms in Huntington disease. Annals of Neurology, 2019, 85, 396-405.	2.8	37
50	GABA _A Receptors Are Well Preserved in the Hippocampus of Aged Mice. ENeuro, 2019, 6, ENEURO.0496-18.2019.	0.9	22
51	<scp>GABA_A</scp> receptor subunit expression changes in the human Alzheimer's disease hippocampus, subiculum, entorhinal cortex and superior temporal gyrus. Journal of Neurochemistry, 2018, 145, 374-392.	2.1	70
52	Differential Fatty Acid-Binding Protein Expression in Persistent Radial Glia in the Human and Sheep Subventricular Zone. Developmental Neuroscience, 2018, 40, 145-161.	1.0	10
53	The GABAergic system as a therapeutic target for Alzheimer's disease. Journal of Neurochemistry, 2018, 146, 649-669.	2.1	113
54	Layer-specific lipid signatures in the human subventricular zone demonstrated by imaging mass spectrometry. Scientific Reports, 2018, 8, 2551.	1.6	18

#	Article	IF	CITATIONS
55	Neurochemical Characterization of PSA-NCAM + Cells in the Human Brain and Phenotypic Quantification in Alzheimer's Disease Entorhinal Cortex. Neuroscience, 2018, 372, 289-303.	1.1	24
56	Modelling physiological and pathological conditions to study pericyte biology in brain function and dysfunction. BMC Neuroscience, 2018, 19, 6.	0.8	17
57	TMIC-21. THE POTENTIAL CONTRIBUTION OF PERICYTES TO GLIOBLASTOMA MULTIFORME TUMOUR MICRO-ENVIRONMENT IMMUNOSUPPRESSION VIA DAMPENED EXPRESSION OF ICAM-1, VCAM-1 AND MCP-1. Neuro-Oncology, 2018, 20, vi260-vi260.	0.6	0
58	Subventricular zone lipidomic architecture loss in Huntington's disease. Journal of Neurochemistry, 2018, 146, 613-630.	2.1	34
59	Unique and shared inflammatory profiles of human brain endothelia and pericytes. Journal of Neuroinflammation, 2018, 15, 138.	3.1	83
60	PU.1 regulates Alzheimer's disease-associated genes in primary human microglia. Molecular Neurodegeneration, 2018, 13, 44.	4.4	111
61	Stereological Methods to Quantify Cell Loss in the Huntington's Disease Human Brain. Methods in Molecular Biology, 2018, 1780, 1-16.	0.4	1
62	Markers for human brain pericytes and smooth muscle cells. Journal of Chemical Neuroanatomy, 2018, 92, 48-60.	1.0	169
63	Gamma-aminobutyric acid A receptors in Alzheimer's disease: highly localized remodeling of a complex and diverse signaling pathway. Neural Regeneration Research, 2018, 13, 1362.	1.6	36
64	α-synuclein transfer through tunneling nanotubes occurs in SH-SY5Y cells and primary brain pericytes from Parkinson's disease patients. Scientific Reports, 2017, 7, 42984.	1.6	112
65	The pathogenic exon 1 HTT protein is produced by incomplete splicing in Huntington's disease patients. Scientific Reports, 2017, 7, 1307.	1.6	150
66	Evidence for widespread, severe brain copper deficiency in Alzheimer's dementia. Metallomics, 2017, 9, 1106-1119.	1.0	74
67	Impaired expression of GABA transporters in the human Alzheimer's disease hippocampus, subiculum, entorhinal cortex and superior temporal gyrus. Neuroscience, 2017, 351, 108-118.	1.1	60
68	Insulin promotes cell migration by regulating PSA-NCAM. Experimental Cell Research, 2017, 355, 26-39.	1.2	5
69	A ventral glomerular deficit in Parkinson's disease revealed by whole olfactory bulb reconstruction. Brain, 2017, 140, 2722-2736.	3.7	53
70	Metal concentrations and distributions in the human olfactory bulb in Parkinson's disease. Scientific Reports, 2017, 7, 10454.	1.6	31
71	Alzheimer's disease markers in the aged sheep (Ovis aries). Neurobiology of Aging, 2017, 58, 112-119.	1.5	30
72	Brain urea increase is an early Huntington's disease pathogenic event observed in a prodromal transgenic sheep model and HD cases. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E11293-E11302.	3.3	78

#	Article	IF	CITATIONS
73	The Complexity of Clinical Huntington's Disease: Developments in Molecular Genetics, Neuropathology and Neuroimaging Biomarkers. Advances in Neurobiology, 2017, 15, 129-161.	1.3	9
74	C9ORF72 and UBQLN2 mutations are causes of amyotrophic lateral sclerosis in New Zealand: a genetic and pathologic study using banked human brain tissue. Neurobiology of Aging, 2017, 49, 214.e1-214.e5.	1.5	18
75	Endothelial Degeneration of Parkinson's Disease is Related to Alpha-Synuclein Aggregation. , 2017, 7, .		11
76	Towards a Better Understanding of GABAergic Remodeling in Alzheimer's Disease. International Journal of Molecular Sciences, 2017, 18, 1813.	1.8	139
77	Effect of post-mortem delay on N-terminal huntingtin protein fragments in human control and Huntington disease brain lysates. PLoS ONE, 2017, 12, e0178556.	1.1	2
78	Huntington's disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels. Aging, 2016, 8, 1485-1512.	1.4	192
79	Effect of Estradiol on Neurotrophin Receptors in Basal Forebrain Cholinergic Neurons: Relevance for Alzheimer's Disease. International Journal of Molecular Sciences, 2016, 17, 2122.	1.8	29
80	B4â€Detection of the aberrantly spliced exon 1 – intron 1 htt mRNA in HD patient post mortem brain tissue and fibroblast lines. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A10.2-A10.	0.9	0
81	Globus pallidus degeneration and clinicopathological features of Huntington disease. Annals of Neurology, 2016, 80, 185-201.	2.8	24
82	Transcriptome sequencing reveals aberrant alternative splicing in Huntington's disease. Human Molecular Genetics, 2016, 25, 3454-3466.	1.4	102
83	Cultured pericytes from human brain show phenotypic and functional differences associated with differential CD90 expression. Scientific Reports, 2016, 6, 26587.	1.6	38
84	Interferon-Î ³ blocks signalling through PDGFRÎ ² in human brain pericytes. Journal of Neuroinflammation, 2016, 13, 249.	3.1	28
85	Comparison of Huntington's disease CAG Repeat Length Stability in Human Motor Cortex and Cingulate Gyrus. Journal of Huntington's Disease, 2016, 5, 297-301.	0.9	5
86	Isolation of highly enriched primary human microglia for functional studies. Scientific Reports, 2016, 6, 19371.	1.6	67
87	Elevation of brain glucose and polyol-pathway intermediates with accompanying brain-copper deficiency in patients with Alzheimer's disease: metabolic basis for dementia. Scientific Reports, 2016, 6, 27524.	1.6	68
88	P1â€149: Urea Cycle Enzymes and Peptidylarginine Deiminase in Alzheimer's Superior Frontal Gyrus. Alzheimer's and Dementia, 2016, 12, P460.	0.4	3
89	Symptom heterogeneity in Huntington's disease correlates with neuronal degeneration in the cerebral cortex. Neurobiology of Disease, 2016, 96, 67-74.	2.1	58
90	The role of the human globus pallidus in <scp>H</scp> untington's disease. Brain Pathology, 2016, 26, 741-751.	2.1	25

#	Article	IF	CITATIONS
91	Hippocampal lipid differences in Alzheimer's disease: a human brain study using matrixâ€assisted laser desorption/ionizationâ€imaging mass spectrometry. Brain and Behavior, 2016, 6, e00517.	1.0	33
92	Metabolic disruption identified in the Huntington's disease transgenic sheep model. Scientific Reports, 2016, 6, 20681.	1.6	52
93	Epigenetic Regulation of Tissue-Type Plasminogen Activator in Human Brain Tissue and Brain-Derived Cells. Gene Regulation and Systems Biology, 2016, 10, GRSB.S30241.	2.3	2
94	TGF-beta1 regulates human brain pericyte inflammatory processes involved in neurovasculature function. Journal of Neuroinflammation, 2016, 13, 37.	3.1	136
95	Distribution of PSA-NCAM in normal, Alzheimer's and Parkinson's disease human brain. Neuroscience, 2016, 330, 359-375.	1.1	43
96	Mapping the calcitonin receptor in human brain stem. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R788-R793.	0.9	26
97	Metabolite mapping reveals severe widespread perturbation of multiple metabolic processes in Huntington's disease human brain. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1650-1662.	1.8	38
98	Graded perturbations of metabolism in multiple regions of human brain in Alzheimer's disease: Snapshot of a pervasive metabolic disorder. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1084-1092.	1.8	118
99	Studying Human Brain Inflammation in Leptomeningeal and Choroid Plexus Explant Cultures. Neurochemical Research, 2016, 41, 579-588.	1.6	12
100	P4-032: Microrna regulation of human brain pericytes. , 2015, 11, P777-P778.		0
101	Distribution of the creatine transporter throughout the human brain reveals a spectrum of creatine transporter immunoreactivity. Journal of Comparative Neurology, 2015, 523, Spc1-Spc1.	0.9	1
102	An anti-inflammatory role for C/EBPÎ $^{\prime}$ in human brain pericytes. Scientific Reports, 2015, 5, 12132.	1.6	45
103	String Vessel Formation is Increased in the Brain of Parkinson Disease. Journal of Parkinson's Disease, 2015, 5, 821-836.	1.5	40
104	P4-017: Arginine decarboxylase and agmatinase immunoreactivity in Alzheimer's superior frontal gyrus. , 2015, 11, P773-P773.		3
105	Making (anti-) sense out of huntingtin levels in Huntington disease. Molecular Neurodegeneration, 2015, 10, 21.	4.4	20
106	Disrupted vasculature and blood–brain barrier in <scp>H</scp> untington disease. Annals of Neurology, 2015, 78, 158-159.	2.8	7
107	Distribution of the creatine transporter throughout the human brain reveals a spectrum of creatine transporter immunoreactivity. Journal of Comparative Neurology, 2015, 523, 699-725.	0.9	37
108	The RAGE receptor and its ligands are highly expressed in astrocytes in a gradeâ€dependant manner in the striatum and subependymal layer in Huntington's disease. Journal of Neurochemistry, 2015, 134, 927-942.	2.1	30

#	Article	IF	CITATIONS
109	Identification of elevated urea as a severe, ubiquitous metabolic defect in the brain of patients with Huntington's disease. Biochemical and Biophysical Research Communications, 2015, 468, 161-166.	1.0	61
110	The Diversity of GABAA Receptor Subunit Distribution in the Normal and Huntington's Disease Human Brain1. Advances in Pharmacology, 2015, 73, 223-264.	1.2	27
111	Stroke Awareness and Knowledge in an Urban New Zealand Population. Journal of Stroke and Cerebrovascular Diseases, 2015, 24, 1153-1162.	0.7	11
112	Assessing fibrinogen extravasation into Alzheimer's disease brain using high-content screening of brain tissue microarrays. Journal of Neuroscience Methods, 2015, 247, 41-49.	1.3	23
113	Increased acetyl and total histone levels in post-mortem Alzheimer's disease brain. Neurobiology of Disease, 2015, 74, 281-294.	2.1	112
114	Cortical interneuron loss and symptom heterogeneity in Huntington disease. Annals of Neurology, 2014, 75, 717-727.	2.8	59
115	The Neuropathology of Huntington's Disease. Current Topics in Behavioral Neurosciences, 2014, 22, 33-80.	0.8	189
116	Targeting ATM ameliorates mutant Huntingtin toxicity in cell and animal models of Huntington's disease. Science Translational Medicine, 2014, 6, 268ra178.	5.8	103
117	A role for human brain pericytes in neuroinflammation. Journal of Neuroinflammation, 2014, 11, 104.	3.1	125
118	Global changes in DNA methylation and hydroxymethylation in Alzheimer's disease human brain. Neurobiology of Aging, 2014, 35, 1334-1344.	1.5	300
119	Early and progressive circadian abnormalities in Huntington's disease sheep are unmasked by social environment. Human Molecular Genetics, 2014, 23, 3375-3383.	1.4	78
120	Cannabinoid receptor CB2 is expressed on vascular cells, but not astroglial cells in the post-mortem human Huntington's disease brain. Journal of Chemical Neuroanatomy, 2014, 59-60, 62-71.	1.0	31
121	Altered arginine metabolism in Alzheimer's disease brains. Neurobiology of Aging, 2014, 35, 1992-2003.	1.5	148
122	Widespread Heterogeneous Neuronal Loss Across the Cerebral Cortex in Huntington's Disease. Journal of Huntington's Disease, 2014, 3, 45-64.	0.9	54
123	Neuropathology in the Human Brain. , 2014, , .		3
124	Increased Precursor Cell Proliferation after Deep Brain Stimulation for Parkinson's Disease: A Human Study. PLoS ONE, 2014, 9, e88770.	1.1	47
125	Isolation and Culture of Adult Human Microglia Within Mixed Glial Cultures for Functional Experimentation and High-Content Analysis. Methods in Molecular Biology, 2013, 1041, 41-51.	0.4	14

P2-002: Altered arginine metabolism in the Alzheimer's hippocampus. , 2013, 9, P346-P346.

0

#	Article	IF	CITATIONS
127	M-CSF increases proliferation and phagocytosis while modulating receptor and transcription factor expression in adult human microglia. Journal of Neuroinflammation, 2013, 10, 85.	3.1	85
128	Dynamic changes in myelin aberrations and oligodendrocyte generation in chronic amyloidosis in mice and men. Clia, 2013, 61, 273-286.	2.5	155
129	GABAA receptor characterization and subunit localization in the human sub ventricular zone. Journal of Chemical Neuroanatomy, 2013, 52, 58-68.	1.0	8
130	Dissociated Expression of Mitochondrial and Cytosolic Creatine Kinases in the Human Brain: A New Perspective on the Role of Creatine in Brain Energy Metabolism. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1295-1306.	2.4	42
131	The transcription factor PU.1 is critical for viability and function of human brain microglia. Glia, 2013, 61, 929-942.	2.5	95
132	Aberrant splicing of <i>HTT</i> generates the pathogenic exon 1 protein in Huntington disease. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2366-2370.	3.3	415
133	Striatal parvalbuminergic neurons are lost in Huntington's disease: implications for dystonia. Movement Disorders, 2013, 28, 1691-1699.	2.2	85
134	Further Molecular Characterisation of the OVT73 Transgenic Sheep Model of Huntington's Disease Identifies Cortical Aggregates. Journal of Huntington's Disease, 2013, 2, 279-295.	0.9	47
135	Recovery of Neurological Functions in Non-Human Primate Model of Parkinson's Disease by Transplantation of Encapsulated Neonatal Porcine Choroid Plexus Cells. Journal of Parkinson's Disease, 2013, 3, 275-291.	1.5	29
136	Proteomic Analysis of the Human Brain in Huntington's Disease Indicates Pathogenesis by Molecular Processes Linked to other Neurodegenerative Diseases and to Type-2 Diabetes. Journal of Huntington's Disease, 2013, 2, 89-99.	0.9	22
137	Increased Steady-State Mutant Huntingtin mRNA in Huntington's Disease Brain. Journal of Huntington's Disease, 2013, 2, 491-500.	0.9	12
138	Adult Human Glia, Pericytes and Meningeal Fibroblasts Respond Similarly to IFNy but Not to TGFβ1 or M-CSF. PLoS ONE, 2013, 8, e80463.	1.1	37
139	Insulin and <scp>IGF</scp> 1 modulate turnover of polysialylated neural cell adhesion molecule (<scp>PSA</scp> – <scp>NCAM</scp>) in a process involving specific extracellular matrix components. Journal of Neurochemistry, 2013, 126, 758-770.	2.1	25
140	Identifying Neural Progenitor Cells in the Adult Human Brain. Methods in Molecular Biology, 2013, 1059, 195-225.	0.4	3
141	New Perspectives on the Neuropathology in Huntington's Disease in the Human Brain and its Relation to Symptom Variation. Journal of Huntington's Disease, 2012, 1, 143-153.	0.9	39
142	Selective Neurodegeneration, Neuropathology and Symptom Profiles in Huntington's Disease. Advances in Experimental Medicine and Biology, 2012, 769, 141-152.	0.8	20
143	Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration. Nature Genetics, 2012, 44, 390-397.	9.4	229
144	Adult Human Brain Neural Progenitor Cells (NPCs) and Fibroblast-Like Cells Have Similar Properties In Vitro but Only NPCs Differentiate into Neurons. PLoS ONE, 2012, 7, e37742.	1.1	43

#	Article	IF	CITATIONS
145	Neurogenesis and progenitor cells in the adult human brain: A comparison between hippocampal and subventricular progenitor proliferation. Developmental Neurobiology, 2012, 72, 990-1005.	1.5	101
146	A method for generating high-yield enriched neuronal cultures from P19 embryonal carcinoma cells. Journal of Neuroscience Methods, 2012, 204, 87-103.	1.3	27
147	Fragments of HdhQ150 Mutant Huntingtin Form a Soluble Oligomer Pool That Declines with Aggregate Deposition upon Aging. PLoS ONE, 2012, 7, e44457.	1.1	21
148	Population-specific expression analysis (PSEA) reveals molecular changes in diseased brain. Nature Methods, 2011, 8, 945-947.	9.0	182
149	No change in progenitor cell proliferation in the hippocampus in Huntington's disease. Neuroscience, 2011, 199, 577-588.	1.1	30
150	Allelic imbalance of tissue-type plasminogen activator (t-PA) gene expression in human brain tissue. Thrombosis and Haemostasis, 2011, 105, 945-953.	1.8	8
151	Neurogenesis in humans. European Journal of Neuroscience, 2011, 33, 1170-1174.	1.2	69
152	Valproic acid induces microglial dysfunction, not apoptosis, in human glial cultures. Neurobiology of Disease, 2011, 41, 96-103.	2.1	46
153	Up-regulation of the isoenzymes MAO-A and MAO-B in the human basal ganglia and pons in Huntington's disease revealed by quantitative enzyme radioautography. Brain Research, 2011, 1370, 204-214.	1.1	25
154	Decreased Lin7b Expression in Layer 5 Pyramidal Neurons May Contribute to Impaired Corticostriatal Connectivity in Huntington Disease. Journal of Neuropathology and Experimental Neurology, 2010, 69, 880-895.	0.9	18
155	ABC efflux transporters in brain vasculature of Alzheimer's subjects. Brain Research, 2010, 1358, 228-238.	1.1	112
156	Altered distribution of mGlu2 receptors in β-amyloid-affected brain regions of Alzheimer cases and aged PS2APP mice. Brain Research, 2010, 1363, 180-190.	1.1	17
157	An ovine transgenic Huntington's disease model. Human Molecular Genetics, 2010, 19, 1873-1882.	1.4	166
158	Cleavage at the 586 Amino Acid Caspase-6 Site in Mutant huntingtin Influences Caspase-6 Activation <i>In Vivo</i> . Journal of Neuroscience, 2010, 30, 15019-15029.	1.7	94
159	Cell loss in the motor and cingulate cortex correlates with symptomatology in Huntington's disease. Brain, 2010, 133, 1094-1110.	3.7	188
160	Neurotransmitter Receptors in the Basal Ganglia. Handbook of Behavioral Neuroscience, 2010, , 75-96.	0.7	4
161	Localisation of glycine receptors in the human forebrain, brainstem, and cervical spinal cord: an immunohistochemical review. Frontiers in Molecular Neuroscience, 2009, 2, 25.	1.4	54
162	The rostral migratory stream and olfactory system: smell, disease and slippery cells. Progress in Brain Research, 2009, 175, 33-42.	0.9	17

#	Article	IF	CITATIONS
163	Paradoxical delay in the onset of disease caused by super-long CAG repeat expansions in R6/2 mice. Neurobiology of Disease, 2009, 33, 331-341.	2.1	114
164	High-throughput quantification of Alzheimer's disease pathological markers in the post-mortem human brain. Journal of Neuroscience Methods, 2009, 176, 298-309.	1.3	9
165	The cellular composition and morphological organization of the rostral migratory stream in the adult human brain. Journal of Chemical Neuroanatomy, 2009, 37, 196-205.	1.0	89
166	Distinct neuroinflammatory profile in post-mortem human Huntington's disease. NeuroReport, 2009, 20, 1098-1103.	0.6	159
167	The Cellular Localisation of GABAA and Glycine Receptors in the Human Basal Ganglia. Advances in Behavioral Biology, 2009, , 225-237.	0.2	Ο
168	Glutamate Uptake is Reduced in Prefrontal Cortex in Huntington's Disease. Neurochemical Research, 2008, 33, 232-237.	1.6	118
169	Characterization of [3H]Quisqualate Binding to Recombinant Rat Metabotropic Glutamate 1a and 5a Receptors and to Rat and Human Brain Sections. Journal of Neurochemistry, 2008, 75, 2590-2601.	2.1	55
170	Doublecortin expression in the normal and epileptic adult human brain. European Journal of Neuroscience, 2008, 28, 2254-2265.	1.2	94
171	Assessing RNA quality in postmortem human brain tissue. Experimental and Molecular Pathology, 2008, 84, 71-77.	0.9	46
172	DNA instability in postmitotic neurons. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3467-3472.	3.3	184
173	Adult Neurogenesis in Mesial Temporal Lobe Epilepsy: A Review of Recent Animal and Human Studies. Current Pharmaceutical Biotechnology, 2007, 8, 187-194.	0.9	15
174	Striosomes and mood dysfunction in Huntington's disease. Brain, 2007, 130, 206-221.	3.7	136
175	Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage. Human Molecular Genetics, 2007, 16, 1845-1861.	1.4	304
176	Sox-2 is expressed by glial and progenitor cells and Pax-6 is expressed by neuroblasts in the human subventricular zone. Experimental Neurology, 2007, 204, 828-831.	2.0	33
177	Human Neuroblasts Migrate to the Olfactory Bulb via a Lateral Ventricular Extension. Science, 2007, 315, 1243-1249.	6.0	804
178	Glycine receptors in the striatum, globus pallidus, and substantia nigra of the human brain: An immunohistochemical study. Journal of Comparative Neurology, 2007, 502, 1012-1029.	0.9	40
179	High throughput quantification of cells with complex morphology in mixed cultures. Journal of Neuroscience Methods, 2007, 164, 339-349.	1.3	22
180	Cellular composition of human glial cultures from adult biopsy brain tissue. Journal of Neuroscience Methods, 2007, 166, 89-98.	1.3	47

#	Article	IF	CITATIONS
181	The effect of neurodegenerative diseases on the subventricular zone. Nature Reviews Neuroscience, 2007, 8, 712-723.	4.9	154
182	PROGENITOR CELLS AND ADULT NEUROGENESIS IN NEURODEGENERATIVE DISEASES AND INJURIES OF THE BASAL GANGLIA. Clinical and Experimental Pharmacology and Physiology, 2007, 34, 528-532.	0.9	73
183	Loss of SNAP-25 and rabphilin 3a in sensory-motor cortex in Huntington?s disease. Journal of Neurochemistry, 2007, 103, 070630082917008-???.	2.1	75
184	Gene expression profiles of metabolic enzyme transcripts in Alzheimer's disease. Brain Research, 2007, 1127, 127-135.	1.1	116
185	Localization of Parkinson's disease-associated LRRK2 in normal and pathological human brain. Brain Research, 2007, 1155, 208-219.	1.1	139
186	Extracellular signal-regulated kinase involvement in human astrocyte migration. Brain Research, 2007, 1164, 1-13.	1.1	35
187	Differences in Protein Profiles in Schizophrenia Prefrontal Cortex Compared to Other Major Brain Disorders. Clinical Schizophrenia and Related Psychoses, 2007, 1, 73-91.	1.4	8
188	Regional and cellular gene expression changes in human Huntington's disease brain. Human Molecular Genetics, 2006, 15, 965-977.	1.4	696
189	Cholinergic neuronal defect without cell loss in Huntington's disease. Human Molecular Genetics, 2006, 15, 3119-3131.	1.4	117
190	A novel population of progenitor cells expressing cannabinoid receptors in the subependymal layer of the adult normal and Huntington's disease human brain. Journal of Chemical Neuroanatomy, 2006, 31, 210-215.	1.0	36
191	Activated c-Jun is present in neurofibrillary tangles in Alzheimer's disease brains. Neuroscience Letters, 2006, 398, 246-250.	1.0	47
192	Aggregate distribution in frontal and motor cortex in Huntington??s disease brain. NeuroReport, 2006, 17, 667-670.	0.6	25
193	Immunohistochemical staining of post-mortem adult human brain sections. Nature Protocols, 2006, 1, 2719-2732.	5.5	155
194	Assessment of the relationship between pre-chip and post-chip quality measures for Affymetrix GeneChip expression data. BMC Bioinformatics, 2006, 7, 211.	1.2	35
195	Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Annals of Neurology, 2006, 60, 557-569.	2.8	479
196	250. Protection Against Huntington's Diease Progression: AAV-Mediated Delivery of Biotherapeutics. Molecular Therapy, 2006, 13, S96.	3.7	0
197	451. AAV-BDNF Augments Neurogenesis in Both the Normal Adult Rat Brain and the Quinolinic Acid Lesion Model of Huntington's Disease. Molecular Therapy, 2006, 13, S174.	3.7	0
198	A histochemical and immunohistochemical analysis of the subependymal layer in the normal and Huntington's disease brain. Journal of Chemical Neuroanatomy, 2005, 30, 55-66.	1.0	61

#	Article	IF	CITATIONS
199	The distribution of progenitor cells in the subependymal layer of the lateral ventricle in the normal and Huntington's disease human brain. Neuroscience, 2005, 132, 777-788.	1.1	124
200	Activating transcription factor 2 expression in the adult human brain: Association with both neurodegeneration and neurogenesis. Neuroscience, 2005, 133, 437-451.	1.1	63
201	Neurogenesis in the Basal Ganglia in Huntington's Disease in the Human Brain and in an Animal Model. , 2005, , 425-433.		0
202	Spinal Cord: Cyto- and Chemoarchitecture. , 2004, , 190-232.		21
203	Increased MAP kinase activity in Alzheimer's and Down syndrome but not in schizophrenia human brain. European Journal of Neuroscience, 2004, 19, 2711-2719.	1.2	138
204	Comparative cellular distribution of GABAA and GABAB receptors in the human basal ganglia: Immunohistochemical colocalization of the ?1 subunit of the GABAA receptor, and the GABABR1 and GABABR2 receptor subunits. Journal of Comparative Neurology, 2004, 470, 339-356.	0.9	82
205	TBP, a polyglutamine tract containing protein, accumulates in Alzheimer's disease. Molecular Brain Research, 2004, 125, 120-128.	2.5	21
206	N-terminal tripeptide of IGF-1 improves functional deficits after 6-OHDA lesion in rats. NeuroReport, 2004, 15, 1601-1604.	0.6	44
207	GPR105, a novel Gi/o-coupled UDP-glucose receptor expressed on brain glia and peripheral immune cells, is regulated by immunologic challenge: possible role in neuroimmune function. Molecular Brain Research, 2003, 118, 10-23.	2.5	85
208	Molecular investigation of TBP allele length:. Neurobiology of Disease, 2003, 13, 37-45.	2.1	31
209	Increased cell proliferation and neurogenesis in the adult human Huntington's disease brain. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9023-9027.	3.3	494
210	Neurogenesis in the Diseased Adult Human Brain: New Therapeutic Strategies for Neurodegenerative Diseases. Cell Cycle, 2003, 2, 427-429.	1.3	23
211	Gene expression analysis in schizophrenia: Reproducible up-regulation of several members of the apolipoprotein L family located in a high-susceptibility locus for schizophrenia on chromosome 22. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4680-4685.	3.3	167
212	Insoluble TATA-binding protein accumulation in Huntington's disease cortex. Molecular Brain Research, 2002, 109, 1-10.	2.5	54
213	Identification and characterization of a novel splice variant of the metabotropic glutamate receptor 5 gene in human hippocampus and cerebellum. Molecular Brain Research, 2002, 109, 168-178.	2.5	34
214	N-Terminal Tripeptide-1 (Gpe) of Igf-1 Prevents the Loss of Th Positive Neurons After 6-Ohda Induced Nigral Lesion in Rats. Advances in Behavioral Biology, 2002, , 255-264.	0.2	0
215	Cellular Localisation of the GabaB R1 Subunit in the Human Basal Ganglia. Advances in Behavioral Biology, 2002, , 137-146.	0.2	0
216	Immunohistochemical Localisation of Tata-Binding Protein in Huntington's Disease Cortex. Advances in Behavioral Biology, 2002, , 481-490.	0.2	0

#	Article	IF	CITATIONS
217	Changes in the mRNAs encoding voltage-gated sodium channel types II and III in human epileptic hippocampus. Neuroscience, 2001, 106, 275-285.	1.1	74
218	Comparative distribution of voltage-gated sodium channel proteins in human brain. Molecular Brain Research, 2001, 88, 37-53.	2.5	136
219	Indexing-based differential display – studies on post-mortem Alzheimer's brains. Molecular Brain Research, 2001, 88, 199-202.	2.5	14
220	Proteomic analysis of the brain in Alzheimer's disease: Molecular phenotype of a complex disease process. Proteomics, 2001, 1, 1519.	1.3	172
221	Insulin-Like Growth Factor-1 Reduces Postischemic White Matter Injury in Fetal Sheep. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 493-502.	2.4	105
222	AXOR12, a Novel Human G Protein-coupled Receptor, Activated by the Peptide KiSS-1. Journal of Biological Chemistry, 2001, 276, 28969-28975.	1.6	775
223	Gene expression of PSD95 in prefrontal cortex and hippocampus in schizophrenia. NeuroReport, 2000, 11, 3133-3137.	0.6	105
224	Regional and cellular distribution of the P2Y1 purinergic receptor in the human brain: Striking neuronal localisation. , 2000, 421, 374-384.		132
225	Distribution of voltage-gated sodium channel ?-subunit and ?-subunit mRNAs in human hippocampal formation, cortex, and cerebellum. Journal of Comparative Neurology, 2000, 422, 123-139.	0.9	115
226	N-terminal tripeptide of IGF-1 (GPE) prevents the loss of TH positive neurons after 6-OHDA induced nigral lesion in rats. Brain Research, 2000, 859, 286-292.	1.1	95
227	Null Alleles at the Huntington Disease Locus: Implications for Diagnostics and CAG Repeat Instability. Genetic Testing and Molecular Biomarkers, 2000, 4, 55-60.	1.7	18
228	The pattern of neurodegeneration in Huntington's disease: a comparative study of cannabinoid, dopamine, adenosine and GABAA receptor alterations in the human basal ganglia in Huntington's disease. Neuroscience, 2000, 97, 505-519.	1.1	492
229	GABAB receptor heterodimer-component localisation in human brain. Molecular Brain Research, 2000, 77, 111-124.	2.5	67
230	First localisation of somatostatin sst4 receptor protein in selected human brain areas: an immunohistochemical study. Molecular Brain Research, 2000, 82, 114-125.	2.5	21
231	Gene expression of metabotropic glutamate receptor 5 and excitatory amino acid transporter 2 in the schizophrenic hippocampus. Molecular Brain Research, 2000, 85, 24-31.	2.5	86
232	Neuroprotective strategies for basal ganglia degeneration: Parkinson's and Huntington's diseases. Progress in Neurobiology, 2000, 60, 409-470.	2.8	251
233	Regional and cellular distribution of bleomycin hydrolase mRNA in human brain: comparison between Alzheimer's diseased and control brains. Neuroscience Letters, 2000, 281, 37-40.	1.0	8
234	The distribution of calbindin, calretinin and parvalbumin immunoreactivity in the human thalamus. Journal of Chemical Neuroanatomy, 2000, 19, 155-173.	1.0	111

#	Article	IF	CITATIONS
235	Distribution of voltage-gated sodium channel α-subunit and β-subunit mRNAs in human hippocampal formation, cortex, and cerebellum. , 2000, 422, 123.		1
236	Variable Susceptibility to Neurotoxicity of Systemic 3-Nitropropionic Acid. , 2000, , 129-140.		4
237	Proteome map of the human hippocampus. , 1999, 9, 644-650.		43
238	XCE, a new member of the endothelin-converting enzyme and neutral endopeptidase family, is preferentially expressed in the CNS. Molecular Brain Research, 1999, 64, 211-221.	2.5	85
239	Cloning and functional expression of alternative spliced variants of the human metabotropic glutamate receptor 8. Molecular Brain Research, 1999, 67, 201-210.	2.5	64
240	The IGF-I Amino-Terminal Tripeptide Glycine-Proline-Glutamate (GPE) Is Neuroprotective to Striatum in the Quinolinic Acid Lesion Animal Model of Huntington's Disease. Experimental Neurology, 1999, 159, 84-97.	2.0	45
241	Localization of the type VI voltage-gated sodium channel protein in human CNS. NeuroReport, 1999, 10, 3703-3709.	0.6	17
242	Immunohistochemical localisation of mGluR7 protein in the rodent and human cerebellar cortex using subtype specific antibodies. Molecular Brain Research, 1998, 57, 132-141.	2.5	36
243	Trinucleotide (CAG) repeat length is positively correlated with the degree of DNA fragmentation in Huntington's disease striatum. Neuroscience, 1998, 87, 49-53.	1.1	94
244	3-Nitropropionic acid's lethal triplet. NeuroReport, 1998, 9, R57-R64.	0.6	135
245	Localization of the somatostatin sst2(a) receptor in human cerebral cortex, hippocampus and cerebellum. NeuroReport, 1998, 9, 521-525.	0.6	34
246	Brain-derived neurotrophic factor is reduced in Alzheimer's disease. Molecular Brain Research, 1997, 49, 71-81.	2.5	519
247	Insulin-like growth factor-I (IGF-I) immunoreactivity in the Alzheimer's disease temporal cortex and hippocampus. Molecular Brain Research, 1997, 49, 283-290.	2.5	55
248	Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience, 1997, 77, 299-318.	1.1	903
249	Bax expression in mammalian neurons undergoing apoptosis, and in Alzheimer's disease hippocampus. Brain Research, 1997, 750, 223-234.	1.1	145
250	Neuronal nitric oxide synthase (nNOS) mRNA expression and NADPH-diaphorase staining in the frontal cortex, visual cortex and hippocampus of control and Alzheimer's disease brains. Molecular Brain Research, 1996, 41, 36-49.	2.5	68
251	Trk receptor alterations in Alzheimer's disease. Molecular Brain Research, 1996, 42, 1-17.	2.5	101
252	Loss of A1 adenosine receptors in human temporal lobe epilepsy. Brain Research, 1996, 710, 56-68.	1.1	120

#	Article	IF	CITATIONS
253	Localisation of the adenosine uptake site in the human brain: a comparison with the distribution of adenosine Al receptors. Brain Research, 1996, 710, 79-91.	1.1	35
254	GABAa Receptor Subunit Subtypes in the Human Putamen and Globus Pallidus in Huntington's Disease. Advances in Behavioral Biology, 1996, , 433-439.	0.2	6
255	Prolonged expression of Fos-related antigens, Jun B and TrkB in dopamine-denervated striatal neurons. Molecular Brain Research, 1995, 30, 393-396.	2.5	28
256	GABA and GABAA receptor changes in the substantia nigra of the rat following quinolinic acid lesions in the striatum closely resemble Huntington's disease. Neuroscience, 1995, 66, 507-521.	1.1	40
257	Interaction of Felbamate with [3H]DCKA-Labeled Strychnine-Insensitive Glycine Receptors in Human Postmortem Brain. Experimental Neurology, 1994, 129, 244-250.	2.0	15
258	GABA, muscarinic cholinergic, excitatory amino acid, neurotensin and opiate binding sites in the octavolateralis column and cerebellum of the skateRaja nasuta (Pisces: Rajidae). Brain Research, 1994, 652, 40-48.	1.1	11
259	Use of [3H]5,7 dichlorokynurenic acid to identify strychnine-insensitive glycine receptors in human postmortem brain. Brain Research Bulletin, 1994, 35, 205-209.	1.4	4
260	Loss of cannabinoid receptors in the substantia nigra in huntington's disease. Neuroscience, 1993, 56, 523-527.	1.1	216
261	The regional, cellular and subcellular localization of GABAA/benzodiazepine receptors in the substantia nigra of the rat. Neuroscience, 1992, 50, 355-370.	1.1	53
262	Contrasting Effects of Raclopride and SCH 23390 on the Cellular Content of Preproenkephalin A mRNA in Rat Striatum: A Quantitative Non-radioactive In Situ Hybridization Study. European Journal of Neuroscience, 1992, 4, 102-112.	1.2	25
263	Differential effects of acute dopaminergic D1 and D2 receptor antagonists on proneurotensin mRNA expression in rat striatum. Molecular Brain Research, 1991, 9, 341-346.	2.5	38
264	Prolonged and selective induction of Fos-related antigen(s) in striatal neurons after 6-hydroxydopamine lesions of the rat substantia nigra pars compacta. Molecular Brain Research, 1991, 10, 355-358.	2.5	48
265	Autoradiographic visualisation of [3H]DTG binding to σ receptors, [3H]TCP binding sites, and l-[3H]glutamate binding to NMDA receptors in human cerebellum. Neuroscience Letters, 1991, 125, 143-146.	1.0	14
266	Autoradiographic distribution of sigma receptors in human neocortex, hippocampus, basal ganglia, cerebellum, pineal and pituitary glands. Brain Research, 1991, 559, 172-177.	1.1	46
267	Elevated expression ofjun andfos-related proteins in transplanted striatal neurons. Brain Research, 1991, 558, 321-324.	1.1	13
268	Differential sensitivity of calbindin and parvalbumin immunoreactive cells in the striatum to excitotoxins. Brain Research, 1991, 546, 329-335.	1.1	76
269	Distribution of excitatory and inhibitory amino acid, sigma, monoamine, catecholamine, acetylcholine, opioid, neurotensin, substance P, adenosine and neuropeptide Y receptors in human motor and somatosensory cortex. Brain Research, 1991, 566, 225-238.	1.1	30
270	Excitatory amino acids, NMDA and sigma receptors: A role in schizophrenia?. Behavioral and Brain Sciences, 1991, 14, 34-35.	0.4	3

#	Article	IF	CITATIONS
271	Autoradiographic localisation of NMDA, quisqualate and kainic acid receptors in human spinal cord. Neuroscience Letters, 1990, 108, 53-57.	1.0	95
272	D2 dopamine receptor antagonists induce fos and related proteins in rat striatal neurons. Neuroscience, 1990, 37, 287-294.	1.1	346
273	MK-801, an antagonist of NMDA receptors, inhibits injury-induced c-fos protein accumulation in rat brain. Neuroscience Letters, 1990, 109, 128-133.	1.0	79
274	Alzheimer's disease: Changes in hippocampal N-methyl-d-aspartate, quisqualate, neurotensin, adenosine, benzodiazepine, serotonin and opioid receptors—an autoradiographic study. Neuroscience, 1990, 39, 613-627.	1.1	188
275	MK-801 induces c-fos protein in thalamic and neocortical neurons of rat brain. Neuroscience Letters, 1990, 111, 39-45.	1.0	91
276	GABA, GABA receptors and benzodiazepine receptors in the human spinal cord: An autoradiographic and immunohistochemical study at the light and electron microscopic levels. Neuroscience, 1990, 39, 361-385.	1.1	110
277	Sigma receptors are highly concentrated in the rat pineal gland. Brain Research, 1990, 507, 158-160.	1.1	69
278	Effects of hypoxia-ischemia and seizures on neuronal and glial-like c-fos protein levels in the infant rat. Brain Research, 1990, 531, 105-116.	1.1	92
279	Induction of Fos in glia-like cells after focal brain injury but not during wallerian degeneration. Brain Research, 1990, 527, 41-54.	1.1	59
280	Haloperidol induces Fos and related molecules in intrastriatal grafts derived from fetal striatal primordia. Brain Research, 1990, 530, 309-311.	1.1	30
281	NMDA and kainic acid receptors have a complementary distribution to AMPA receptors in the human cerebellum. Brain Research, 1990, 532, 351-354.	1.1	23
282	Spinal Cord: Cytoarchitectural, Dendroarchitectural, and Myeloarchitectural Organization. , 1990, , 19-53.		15
283	Spinal Cord: Chemoarchitectural Organization. , 1990, , 55-75.		7
284	The use of c-fos as a metabolic marker in neuronal pathway tracing. Journal of Neuroscience Methods, 1989, 29, 261-265.	1.3	1,299
285	Neurotensin receptors in the human spinal cord: A quantitative autoradiographic study. Neuroscience, 1989, 29, 603-613.	1.1	20
286	Excitatory amino acid receptors in the human cerebral cortex: A quantitative autoradiographic study comparing the distributions of [3H]TCP, [3H]glycine,l-[3H]glutamate, [3H]AMPA and [3H]kainic acid binding sites. Neuroscience, 1989, 32, 587-607.	1.1	134
287	Long-term potentiation and the induction of c-fos mRNA and proteins in the dentate gyrus of unanesthetized rats. Neuroscience Letters, 1989, 101, 274-280.	1.0	184
288	[3H]Glycine binding sites, NMDA and PCP receptors have similar distributions in the human hippocampus: an autoradiographic study. Brain Research, 1989, 482, 174-178.	1.1	78

#	Article	IF	CITATIONS
289	Rolipram induces c-fos protein-like immunoreactivity in ependymal and glial-like cells in adult rat brain. Brain Research, 1989, 501, 382-388.	1.1	25
290	The distribution of neurotensin receptors and acetylcholinesterase in the human caudate nucleus: evidence for the existence of a third neurochemical compartment. Brain Research, 1989, 488, 381-386.	1.1	65
291	Neuroprotective effects of adenosine. Trends in Pharmacological Sciences, 1988, 9, 193-194.	4.0	157
292	Benzodiazepine Receptors in the Striatum of the Human Brain. Advances in Behavioral Biology, 1987, , 175-184.	0.2	0
293	Muscarinic cholinergic receptors in the human spinal cord: differential localization of [3H]pirenzepine and [3H]quinuclidinylbenzilate binding sites. Brain Research, 1985, 345, 196-199.	1.1	60
294	A comparative study of the neurons of origin of the spinocerebellar afferents in the rat, Cat and squirrel monkey based on the retrograde transport of horseradish peroxidase. Journal of Comparative Neurology, 1978, 181, 833-852.	0.9	150
295	Ascending projections of the substantia nigra in the rat,. Journal of Comparative Neurology, 1968, 132, 73-91.	0.9	157