Michael Sander

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8800319/publications.pdf

Version: 2024-02-01

53939 56606 7,974 87 47 87 citations h-index g-index papers 90 90 90 7985 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Redox Properties of Plant Biomass-Derived Black Carbon (Biochar). Environmental Science & Emp; Technology, 2014, 48, 5601-5611.	4.6	791
2	Novel Electrochemical Approach to Assess the Redox Properties of Humic Substances. Environmental Science & Environmental Scien	4.6	490
3	Antioxidant Properties of Humic Substances. Environmental Science & Environmen	4.6	471
4	Humic substances as fully regenerable electron acceptors in recurrently anoxic environments. Nature Geoscience, 2014, 7, 195-200.	5.4	439
5	Biodegradation of synthetic polymers in soils: Tracking carbon into CO ₂ and microbial biomass. Science Advances, 2018, 4, eaas9024.	4.7	284
6	Chemical Oxidation of Dissolved Organic Matter by Chlorine Dioxide, Chlorine, And Ozone: Effects on Its Optical and Antioxidant Properties. Environmental Science & Environmental Science & 2013, 47, 11147-11156.	4.6	244
7	Photooxidation-Induced Changes in Optical, Electrochemical, and Photochemical Properties of Humic Substances. Environmental Science & Environmental Sc	4.6	211
8	Electrochemical Analysis of Proton and Electron Transfer Equilibria of the Reducible Moieties in Humic Acids. Environmental Science & Environmental Sc	4.6	208
9	Viruses at Solid–Water Interfaces: A Systematic Assessment of Interactions Driving Adsorption. Environmental Science & Driving Adsorption. 2016, 50, 732-743.	4.6	199
10	Dark Formation of Hydroxyl Radical in Arctic Soil and Surface Waters. Environmental Science & Emp; Technology, 2013, 47, 12860-12867.	4.6	198
11	Hydroxyl Radical Formation upon Oxidation of Reduced Humic Acids by Oxygen in the Dark. Environmental Science & Environmental	4.6	184
12	Characterization of Charcoal Adsorption Sites for Aromatic Compounds:  Insights Drawn from Single-Solute and Bi-Solute Competitive Experiments. Environmental Science & Eamp; Technology, 2005, 39, 1606-1615.	4.6	180
13	Biodegradation of Polymeric Mulch Films in Agricultural Soils: Concepts, Knowledge Gaps, and Future Research Directions. Environmental Science & Envir	4.6	169
14	A Thermodynamically Based Method to Quantify True Sorption Hysteresis. Journal of Environmental Quality, 2005, 34, 1063-1072.	1.0	141
15	Triplet Photochemistry of Effluent and Natural Organic Matter in Whole Water and Isolates from Effluent-Receiving Rivers. Environmental Science & Environmental Science & 2015, 49, 3453-3463.	4.6	135
16	Redox Properties of Structural Fe in Clay Minerals: 3. Relationships between Smectite Redox and Structural Properties. Environmental Science & Environ	4.6	131
17	Analysis and Sorption of Psychoactive Drugs onto Sediment. Environmental Science & Emp; Technology, 2008, 42, 6415-6423.	4.6	130
18	Redox Properties of Structural Fe in Clay Minerals. 1. Electrochemical Quantification of Electron-Donating and -Accepting Capacities of Smectites. Environmental Science & Emp; Technology, 2012, 46, 9360-9368.	4.6	125

#	Article	IF	Citations
19	Electrochemical Analyses of Redox-Active Iron Minerals: A Review of Nonmediated and Mediated Approaches. Environmental Science & Environmental Science	4.6	120
20	Redox Properties of Structural Fe in Clay Minerals. 2. Electrochemical and Spectroscopic Characterization of Electron Transfer Irreversibility in Ferruginous Smectite, SWa-1. Environmental Science & Echnology, 2012, 46, 9369-9377.	4.6	115
21	Electron-Donating Phenolic and Electron-Accepting Quinone Moieties in Peat Dissolved Organic Matter: Quantities and Redox Transformations in the Context of Peat Biogeochemistry. Environmental Science & Echnology, 2018, 52, 5236-5245.	4.6	110
22	Protein Encapsulation by Humic Substances. Environmental Science & Environment	4.6	109
23	Thermodynamic Characterization of Iron Oxide–Aqueous Fe ²⁺ Redox Couples. Environmental Science & Technology, 2016, 50, 8538-8547.	4.6	106
24	Sustainable Polyester Elastomers from Lactones: Synthesis, Properties, and Enzymatic Hydrolyzability. Journal of the American Chemical Society, 2018, 140, 963-973.	6.6	102
25	Low Molecular Weight Components in an Aquatic Humic Substance As Characterized by Membrane Dialysis and Orbitrap Mass Spectrometry. Environmental Science & Environmental Science & 2012, 46, 9350-9359.	4.6	93
26	Enzymatic Hydrolysis of Polyester Thin Films at the Nanoscale: Effects of Polyester Structure and Enzyme Active-Site Accessibility. Environmental Science & Enzyme Active Site Accessibility. Environmental Science & Enzyme Active Site Accessibility.	4.6	89
27	Environmental Fate of RNA Interference Pesticides: Adsorption and Degradation of Double-Stranded RNA Molecules in Agricultural Soils. Environmental Science & Environmental Science & 2019, 53, 3027-3036.	4.6	89
28	Dos and Do Nots When Assessing the Biodegradation of Plastics. Environmental Science & Emp; Technology, 2019, 53, 9967-9969.	4.6	87
29	Photosensitizing and Inhibitory Effects of Ozonated Dissolved Organic Matter on Triplet-Induced Contaminant Transformation. Environmental Science & En	4.6	80
30	Enzymatic surface hydrolysis of poly(ethylene furanoate) thin films of various crystallinities. Green Chemistry, 2017, 19, 5381-5384.	4.6	80
31	Quantification of Phenolic Antioxidant Moieties in Dissolved Organic Matter by Flow-Injection Analysis with Electrochemical Detection. Environmental Science & Environmental Science & 2016, 50, 6423-6432.	4.6	75
32	Cation Binding of Antimicrobial Sulfathiazole to Leonardite Humic Acid. Environmental Science & Emp; Technology, 2009, 43, 6632-6638.	4.6	73
33	Adsorption of Transgenic Insecticidal Cry1Ab Protein to SiO ₂ . 1. Forces Driving Adsorption. Environmental Science &	4.6	72
34	The Multiple States of Environmental DNA and What Is Known about Their Persistence in Aquatic Environments. Environmental Science & Environments. Environmental Science & Envi	4.6	67
35	Solid phases as important electron acceptors in freshwater organic sediments. Biogeochemistry, 2015, 123, 49-61.	1.7	65
36	Electron accepting capacity of dissolved and particulate organic matter control CO2 and CH4 formation in peat soils. Geochimica Et Cosmochimica Acta, 2019, 245, 266-277.	1.6	65

3

#	Article	IF	CITATIONS
37	Enzymatic Degradation of Aromatic and Aliphatic Polyesters by P. pastoris Expressed Cutinase 1 from Thermobifida cellulosilytica. Frontiers in Microbiology, 2017, 8, 938.	1.5	62
38	Covalent Binding of Sulfamethazine to Natural and Synthetic Humic Acids: Assessing Laccase Catalysis and Covalent Bond Stability. Environmental Science & Environmental Scienc	4.6	60
39	Electrochemical Analysis of Changes in Iron Oxide Reducibility during Abiotic Ferrihydrite Transformation into Goethite and Magnetite. Environmental Science & Dechnology, 2019, 53, 3568-3578.	4.6	60
40	Conditioning-Annealing Studies of Natural Organic Matter Solids Linking Irreversible Sorption to Irreversible Structural Expansion. Environmental Science & Eamp; Technology, 2006, 40, 170-178.	4.6	59
41	An Isotope Exchange Technique to Assess Mechanisms of Sorption Hysteresis Applied to Naphthalene in Kerogenous Organic Matter. Environmental Science & Environmental Science & 2005, 39, 7476-7484.	4.6	57
42	Quantification of Synthetic Polyesters from Biodegradable Mulch Films in Soils. Environmental Science & Environmental Science	4.6	56
43	Variability of Nitrogen Isotope Fractionation during the Reduction of Nitroaromatic Compounds with Dissolved Reductants. Environmental Science & Envir	4.6	55
44	Dissolved Organic Matter Adsorption to Model Surfaces: Adlayer Formation, Properties, and Dynamics at the Nanoscale. Environmental Science & Environme	4.6	54
45	Decreases in Iron Oxide Reducibility during Microbial Reductive Dissolution and Transformation of Ferrihydrite. Environmental Science & Environmental	4.6	52
46	Enhanced Indirect Photochemical Transformation of Histidine and Histamine through Association with Chromophoric Dissolved Organic Matter. Environmental Science & Environmental Science, 2015, 49, 5511-5519.	4.6	51
47	Adsorption of Insecticidal Cry1Ab Protein to Humic Substances. 1. Experimental Approach and Mechanistic Aspects. Environmental Science & Environmental	4.6	49
48	Assessing the Effect of Humic Acid Redox State on Organic Pollutant Sorption by Combined Electrochemical Reduction and Sorption Experiments. Environmental Science & Echnology, 2012, 46, 3882-3890.	4.6	48
49	Adsorption of Transgenic Insecticidal Cry1Ab Protein to SiO ₂ . 2. Patch-Controlled Electrostatic Attraction. Environmental Science & Electrostatic Attraction. Environmental Science & Electrostatic Attraction.	4.6	45
50	Photochemical Transformation of Poly(butylene adipate- <i>co</i> -terephthalate) and Its Effects on Enzymatic Hydrolyzability. Environmental Science & Enzymatic Hydrolyzability. Environmental Science & Enzymatic Hydrolyzability.	4.6	45
51	Quantification of the electron donating capacity and UV absorbance of dissolved organic matter during ozonation of secondary wastewater effluent by an assay and an automated analyzer. Water Research, 2020, 185, 116235.	5.3	44
52	Microbial reduction of ferrihydrite-organic matter coprecipitates by Shewanella putrefaciens and Geobacter metallireducens in comparison to mediated electrochemical reduction. Chemical Geology, 2016, 447, 133-147.	1.4	43
53	On the Reversibility of Sorption to Black Carbon:Â Distinguishing True Hysteresis from Artificial Hysteresis Caused by Dilution of a Competing Adsorbate. Environmental Science & Environmental Scienc	4.6	42
54	Two analytical approaches quantifying the electron donating capacities of dissolved organic matter to monitor its oxidation during chlorination and ozonation. Water Research, 2018, 144, 677-689.	5.3	41

#	Article	IF	Citations
55	Assessing the environmental transformation of nanoplastic through 13C-labelled polymers. Nature Nanotechnology, 2019, 14, 301-303.	15.6	41
56	Adsorption of Insecticidal Cry1Ab Protein to Humic Substances. 2. Influence of Humic and Fulvic Acid Charge and Polarity Characteristics. Environmental Science & Environmental Science & Polarity Characteristics. Environmental Science & Environmen	4.6	40
57	Sorption irreversibility of 1,4â€dichlorobenzene in two natural organic matter–rich geosorbents. Environmental Toxicology and Chemistry, 2009, 28, 447-457.	2.2	37
58	Adsorption of Transgenic Insecticidal Cry1Ab Protein to Silica Particles. Effects on Transport and Bioactivity. Environmental Science & Environmental	4.6	36
59	High-Throughput Analysis of Enzymatic Hydrolysis of Biodegradable Polyesters by Monitoring Cohydrolysis of a Polyester-Embedded Fluorogenic Probe. Environmental Science & Env	4.6	35
60	Mediated Electrochemical Reduction of Iron (Oxyhydr-)Oxides under Defined Thermodynamic Boundary Conditions. Environmental Science & Environmental Sci	4.6	35
61	Enzymatic Hydrolysis of Polyester Thin Films: Real-Time Analysis of Film Mass Changes and Dissipation Dynamics. Environmental Science & Environmental	4.6	34
62	Environmental Fate of Insecticidal Plant-Incorporated Protectants from Genetically Modified Crops: Knowledge Gaps and Research Opportunities. Environmental Science & Environmental Science & 2017, 51, 12049-12057.	4.6	34
63	Plant rhizosphere oxidation reduces methane production and emission in rewetted peatlands. Soil Biology and Biochemistry, 2018, 125, 125-135.	4.2	32
64	Competitive Coadsorption Dynamics of Viruses and Dissolved Organic Matter to Positively Charged Sorbent Surfaces. Environmental Science & Environmenta	4.6	29
65	Polyol Structure Influences Enzymatic Hydrolysis of Bioâ€Based 2,5â€Furandicarboxylic Acid (FDCA) Polyesters. Biotechnology Journal, 2017, 12, 1600741.	1.8	29
66	Effects of eutrophication on sedimentary organic carbon cycling in five temperate lakes. Biogeosciences, 2019, 16, 3725-3746.	1.3	26
67	Redox properties of clay-rich sediments as assessed by mediated electrochemical analysis: Separating pyrite, siderite and structural Fe in clay minerals. Chemical Geology, 2017, 457, 149-161.	1.4	25
68	Redox Properties of Structural Fe in Smectite Clay Minerals. ACS Symposium Series, 2011, , 361-379.	0.5	22
69	Photooxidation of the Antimicrobial, Nonribosomal Peptide Bacitracin A by Singlet Oxygen under Environmentally Relevant Conditions. Environmental Science & Environmentally Relevant Conditions. Environmental Science & Envir	4.6	22
70	Organic Matter from Redoximorphic Soils Accelerates and Sustains Microbial Fe(III) Reduction. Environmental Science & Environm	4.6	22
71	Effect of Solution pH on the Dual Role of Dissolved Organic Matter in Sensitized Pollutant Photooxidation. Environmental Science & Environmental Scien	4.6	22

Biomimetic Approach to Enhance Enzymatic Hydrolysis of the Synthetic Polyester Poly(1,4-butylene) Tj ETQq0 0 0 0 rgBT /Overlock 10 Tf 21

#	Article	IF	Citations
73	Redox Properties of Pyrogenic Dissolved Organic Matter (pyDOM) from Biomass-Derived Chars. Environmental Science & Environment	4.6	21
74	Spatiotemporal redox dynamics in a freshwater lake sediment under alternating oxygen availabilities: combined analyses of dissolved and particulate electron acceptors. Environmental Chemistry, 2016, 13, 826.	0.7	19
75	Analysis of RNA Interference (RNAi) Biopesticides: Double-Stranded RNA (dsRNA) Extraction from Agricultural Soils and Quantification by RT-qPCR. Environmental Science & Envir	4.6	17
76	Quantifying the electron donating capacities of sulfide and dissolved organic matter in sediment pore waters of wetlands. Environmental Sciences: Processes and Impacts, 2017, 19, 758-767.	1.7	16
77	Assessing the Indirect Photochemical Transformation of Dissolved Combined Amino Acids through the Use of Systematically Designed Histidine-Containing Oligopeptides. Environmental Science & Emp; Technology, 2015, 49, 12798-12807.	4.6	15
78	Long-Term Warming Decreases Redox Capacity of Soil Organic Matter. Environmental Science and Technology Letters, 2021, 8, 92-97.	3.9	15
79	Oxidation of Reduced Peat Particulate Organic Matter by Dissolved Oxygen: Quantification of Apparent Rate Constants in the Field. Environmental Science & Technology, 2018, 52, 11151-11160.	4.6	14
80	Thermodynamic controls on rates of iron oxide reduction by extracellular electron shuttles. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	14
81	Competitive co-adsorption of bacteriophage MS2 and natural organic matter onto multiwalled carbon nanotubes. Water Research X, 2020, 9, 100058.	2.8	13
82	Redox Properties of Peat Particulate Organic Matter: Quantification of Electron Accepting Capacities and Assessment of Electron Transfer Reversibility. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006329.	1.3	8
83	Adsorption of double-stranded ribonucleic acids (dsRNA) to iron (oxyhydr-)oxide surfaces: comparative analysis of model dsRNA molecules and deoxyribonucleic acids (DNA). Environmental Sciences: Processes and Impacts, 2021, 23, 605-620.	1.7	8
84	Assessing the redox properties of iron-bearing clay minerals using homogeneous electrocatalysis. Applied Geochemistry, 2011, 26, S191-S193.	1.4	6
85	Effects of Macrofaunal Recolonization on Biogeochemical Processes and Microbiota—A Mesocosm Study. Water (Switzerland), 2021, 13, 1599.	1.2	4
86	Site-Specific Mineralization of a Polyester Hydrolysis Product in Natural Soil. ACS Sustainable Chemistry and Engineering, 2022, 10, 1373-1378.	3.2	3
87	What does mediated electrochemistry reveal about regional differences in the redox properties of Boom Clay?. Applied Geochemistry, 2020, 120, 104681.	1.4	2