Kyung Joo Kwon-Chung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8800287/publications.pdf

Version: 2024-02-01

118 papers 7,837 citations

41344 49 h-index 84 g-index

120 all docs

120 docs citations

times ranked

120

6302 citing authors

#	Article	IF	CITATIONS
1	Antifungal Susceptibility Profiles of Olorofim (Formerly F901318) and Currently Available Systemic Antifungals against Mold and Yeast Phases of <i<math>>Talaromyces marneffei. Antimicrobial Agents and Chemotherapy, 2021, 65, .</i<math>	3.2	15
2	Moderate levels of 5-fluorocytosine cause the emergence of high frequency resistance in cryptococci. Nature Communications, 2021, 12, 3418.	12.8	21
3	Cryptococcus gattii Species Complex as an Opportunistic Pathogen: Underlying Medical Conditions Associated with the Infection. MBio, 2021, 12, e0270821.	4.1	25
4	Population diversity and virulence characteristics of Cryptococcus neoformans/C. gattii species complexes isolated during the pre-HIV-pandemic era. PLoS Neglected Tropical Diseases, 2020, 14, e0008651.	3.0	8
5	Global Sexual Fertility in the Opportunistic Pathogen Aspergillus fumigatus and Identification of New Supermater Strains. Journal of Fungi (Basel, Switzerland), 2020, 6, 258.	3.5	6
6	<p>Cryptococcus neoformans/gattii Species Complexes from Pre-HIV Pandemic Era Contain Unusually High Rate of Non-Wild-Type Isolates for Amphotericin B</p> . Infection and Drug Resistance, 2020, Volume 13, 673-681.	2.7	7
7	Annotated Genome Sequence of $\mbox{\ensuremath{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath}\ensuremath{\ensuremath{\mbox{\ensuremath}\ensuremath}\ensu$	0.6	2
8	Pulmonary Iron Limitation Induced by Exogenous Type I IFN Protects Mice from Cryptococcus gattii Independently of T Cells. MBio, 2019, 10 , .	4.1	11
9	A Novel Role of Fungal Type I Myosin in Regulating Membrane Properties and Its Association with <scp>d</scp> -Amino Acid Utilization in Cryptococcus gattii. MBio, 2019, 10, .	4.1	6
10	A New Lineage of Cryptococcus gattii (VGV) Discovered in the Central Zambezian Miombo Woodlands. MBio, 2019, 10, .	4.1	66
11	Recognition of DHN-melanin by a C-type lectin receptor is required for immunity to Aspergillus. Nature, 2018, 555, 382-386.	27.8	157
12	Roles of Three Cryptococcus neoformans and Cryptococcus gattii Efflux Pump-Coding Genes in Response to Drug Treatment. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	43
13	Exogenous Stimulation of Type I Interferon Protects Mice with Chronic Granulomatous Disease from Aspergillosis through Early Recruitment of Host-Protective Neutrophils into the Lung. MBio, 2018, 9, .	4.1	14
14	Cryptococcus neoformans, Unlike Candida albicans, Forms Aneuploid Clones Directly from Uninucleated Cells under Fluconazole Stress. MBio, 2018, 9, .	4.1	18
15	Calcium sequestration by fungal melanin inhibits calcium–calmodulin signalling to prevent LC3-associated phagocytosis. Nature Microbiology, 2018, 3, 791-803.	13.3	66
16	Aspergillosis, eosinophilic esophagitis, and allergic rhinitis in signal transducer and activator of transcription 3 haploinsufficiency. Journal of Allergy and Clinical Immunology, 2018, 142, 993-997.e3.	2.9	19
17	Genetic Factors and Genotype-Environment Interactions Contribute to Variation in Melanin Production in the Fungal Pathogen Cryptococcus neoformans. Scientific Reports, 2018, 8, 9824.	3.3	16
18	The Case for Adopting the "Species Complex―Nomenclature for the Etiologic Agents of Cryptococcosis. MSphere, 2017, 2, .	2.9	274

#	Article	IF	Citations
19	Host immune status-specific production of gliotoxin and bis-methyl-gliotoxin during invasive aspergillosis in mice. Scientific Reports, 2017, 7, 10977.	3.3	14
20	Fundamental niche prediction of the pathogenic yeasts <i>Cryptococcus neoformans</i> and <i>Cryptococcus gattii</i> in Europe. Environmental Microbiology, 2017, 19, 4318-4325.	3.8	44
21	Environmental distribution of <i>Cryptococcus neoformans </i> and <i>C. gattii </i> around the Mediterranean basin. FEMS Yeast Research, 2016, 16, fow 045.	2.3	57
22	<i>Cryptococcus gattii</i> Capsule Blocks Surface Recognition Required for Dendritic Cell Maturation Independent of Internalization and Antigen Processing. Journal of Immunology, 2016, 196, 1259-1271.	0.8	31
23	Extrapulmonary Aspergillus infection in patients with CARD9 deficiency. JCI Insight, 2016, 1, e89890.	5.0	141
24	ls Cryptococcus gattii a Primary Pathogen?. Journal of Fungi (Basel, Switzerland), 2015, 1, 154-167.	3. 5	20
25	Differences between Cryptococcus neoformans and Cryptococcus gattii in the Molecular Mechanisms Governing Utilization of D-Amino Acids as the Sole Nitrogen Source. PLoS ONE, 2015, 10, e0131865.	2.5	12
26	Type I IFN Induction via Poly-ICLC Protects Mice against Cryptococcosis. PLoS Pathogens, 2015, 11, e1005040.	4.7	28
27	Genetic Analysis Using an Isogenic Mating Pair of Aspergillus fumigatus Identifies Azole Resistance Genes and Lack of MAT Locus's Role in Virulence. PLoS Pathogens, 2015, 11, e1004834.	4.7	52
28	Aspergillus fumigatus and Related Species. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a019786-a019786.	6.2	180
29	Cryptococcus neoformans and Cryptococcus gattii, the Etiologic Agents of Cryptococcosis. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a019760-a019760.	6.2	374
30	Molecular Mechanisms of Hypoxic Responses via Unique Roles of Ras1, Cdc24 and Ptp3 in a Human Fungal Pathogen Cryptococcus neoformans. PLoS Genetics, 2014, 10, e1004292.	3. 5	14
31	Genetic Relatedness versus Biological Compatibility between Aspergillus fumigatus and Related Species. Journal of Clinical Microbiology, 2014, 52, 3707-3721.	3.9	79
32	Anti-Granulocyte-Macrophage Colony-Stimulating Factor Autoantibodies Are a Risk Factor for Central Nervous System Infection by Cryptococcus gattii in Otherwise Immunocompetent Patients. MBio, 2014, 5, e00912-14.	4.1	189
33	Surface Structure Characterization of Aspergillus fumigatus Conidia Mutated in the Melanin Synthesis Pathway and Their Human Cellular Immune Response. Infection and Immunity, 2014, 82, 3141-3153.	2.2	113
34	Molecular Typing of the Cryptococcus neoformans/Cryptococcus gattii Species Complex. , 2014, , 327-357.		18
35	Factors Required for Activation of Urease as a Virulence Determinant in Cryptococcus neoformans. MBio, 2013, 4, e00220-13.	4.1	73
36	Chloroquine Modulates the Fungal Immune Response in Phagocytic Cells From Patients With Chronic Granulomatous Disease. Journal of Infectious Diseases, 2013, 207, 1932-1939.	4.0	37

#	Article	IF	CITATIONS
37	Aspergillus fumigatus—What Makes the Species a Ubiquitous Human Fungal Pathogen?. PLoS Pathogens, 2013, 9, e1003743.	4.7	300
38	Azole Heteroresistance in Cryptococcus neoformans: Emergence of Resistant Clones with Chromosomal Disomy in the Mouse Brain during Fluconazole Treatment. Antimicrobial Agents and Chemotherapy, 2013, 57, 5127-5130.	3.2	90
39	Olfm4 deletion enhances defense against Staphylococcus aureus in chronic granulomatous disease. Journal of Clinical Investigation, 2013, 123, 3751-3755.	8.2	62
40	Aspergillus tanneri sp. nov., a New Pathogen That Causes Invasive Disease Refractory to Antifungal Therapy. Journal of Clinical Microbiology, 2012, 50, 3309-3317.	3.9	44
41	Role of Actin-Bundling Protein Sac6 in Growth of Cryptococcus neoformans at Low Oxygen Concentration. Eukaryotic Cell, 2012, 11, 943-951.	3.4	8
42	The Primary Target Organ of Cryptococcus gattii Is Different from That of Cryptococcus neoformans in a Murine Model. MBio, 2012, 3, .	4.1	123
43	Hyaluronic Acid Receptor CD44 Deficiency Is Associated with Decreased Cryptococcus neoformans Brain Infection. Journal of Biological Chemistry, 2012, 287, 15298-15306.	3.4	77
44	Identification of a Cryptococcus neoformans Cytochrome P450 Lanosterol $14\hat{l}\pm$ -Demethylase (Erg11) Residue Critical for Differential Susceptibility between Fluconazole/Voriconazole and Itraconazole/Posaconazole. Antimicrobial Agents and Chemotherapy, 2012, 56, 1162-1169.	3.2	109
45	Cryptococcus neoformans Activates RhoGTPase Proteins Followed by Protein Kinase C, Focal Adhesion Kinase, and Ezrin to Promote Traversal across the Blood-Brain Barrier. Journal of Biological Chemistry, 2012, 287, 36147-36157.	3.4	46
46	Aneuploidy and Drug Resistance in Pathogenic Fungi. PLoS Pathogens, 2012, 8, e1003022.	4.7	69
47	Cryptococcus neoformans-Derived Microvesicles Enhance the Pathogenesis of Fungal Brain Infection. PLoS ONE, 2012, 7, e48570.	2.5	93
48	Taxonomy of Fungi Causing Mucormycosis and Entomophthoramycosis (Zygomycosis) and Nomenclature of the Disease: Molecular Mycologic Perspectives. Clinical Infectious Diseases, 2012, 54, S8-S15.	5.8	254
49	Involvement of PDK1, PKC and TOR signalling pathways in basal fluconazole tolerance in <i>Cryptococcus neoformans</i> . Molecular Microbiology, 2012, 84, 130-146.	2.5	38
50	Cryptococcus neoformansYop1, an endoplasmic reticulum curvature-stabilizing protein, participates with Sey1 in influencing fluconazole-induced disomy formation. FEMS Yeast Research, 2012, 12, 748-754.	2.3	9
51	<i>Cryptococcus neoformans</i> phospholipase B1 activates host cell Rac1 for traversal across the blood-brain barrier. Cellular Microbiology, 2012, 14, 1544-1553.	2.1	62
52	Characterization of the Chromosome 4 Genes That Affect Fluconazole-Induced Disomy Formation in Cryptococcus neoformans. PLoS ONE, 2012, 7, e33022.	2.5	41
53	Differences in Nitrogen Metabolism between Cryptococcus neoformans and C. gattii, the Two Etiologic Agents of Cryptococcosis. PLoS ONE, 2012, 7, e34258.	2.5	26
54	Identification and Characterization of an Aspergillus fumigatus "Supermater―Pair. MBio, 2011, 2, .	4.1	55

#	Article	IF	Citations
55	Human Leukocytes Kill <i>Aspergillus nidulans</i> by Reactive Oxygen Species-Independent Mechanisms. Infection and Immunity, 2011, 79, 767-773.	2.2	43
56	Invasion of Cryptococcus neoformans into Human Brain Microvascular Endothelial Cells Is Mediated through the Lipid Rafts-Endocytic Pathway via the Dual Specificity Tyrosine Phosphorylation-regulated Kinase 3 (DYRK3). Journal of Biological Chemistry, 2011, 286, 34761-34769.	3.4	62
57	Prevalence of the VNIc genotype of Cryptococcus neoformans $\hat{s} \in f$ in non-HIV-associated cryptococcosis in the Republic of Korea. FEMS Yeast Research, 2010, 10, 769-778.	2.3	87
58	Cryptococcus neoformans Overcomes Stress of Azole Drugs by Formation of Disomy in Specific Multiple Chromosomes. PLoS Pathogens, 2010, 6, e1000848.	4.7	380
59	Aspergillus fumigatus Conidial Melanin Modulates Host Cytokine Response. Immunobiology, 2010, 215, 915-920.	1.9	119
60	What do we know about the role of gliotoxin in the pathobiology of <i>Aspergillus fumigatus? </i> Medical Mycology, 2009, 47, S97-S103.	0.7	120
61	Heteroresistance to Fluconazole in <i>Cryptococcus neoformans</i> Is Intrinsic and Associated with Virulence. Antimicrobial Agents and Chemotherapy, 2009, 53, 2804-2815.	3.2	141
62	Conservation of the Sterol Regulatory Element-Binding Protein Pathway and Its Pathobiological Importance in Cryptococcus neoformans. Eukaryotic Cell, 2009, 8, 1770-1779.	3.4	49
63	Invasive Aspergillosis Due to <i>Neosartorya udagawae</i> . Clinical Infectious Diseases, 2009, 49, 102-111.	5.8	103
64	Regulatory Diversity of <i>TUP1 </i> ii>in <i>Cryptococcus neoformans </i> ii>. Eukaryotic Cell, 2009, 8, 1901-1908.	3.4	48
65	<i>Cryptococcus neoformans</i> Siteâ€2 protease is required for virulence and survival in the presence of azole drugs. Molecular Microbiology, 2009, 74, 672-690.	2.5	56
66	Sexual reproduction in Aspergillus species of medical or economical importance: why so fastidious?. Trends in Microbiology, 2009, 17, 481-487.	7.7	46
67	Involvement of human CD44 during Cryptococcus neoformans infection of brain microvascular endothelial cells. Cellular Microbiology, 2008, 10, 1313-1326.	2.1	95
68	Invasion of <i>Cryptococcus neoformans</i> into human brain microvascular endothelial cells requires protein kinase C-α activation. Cellular Microbiology, 2008, 10, 1854-1865.	2.1	57
69	Importance of Mitochondria in Survival of Cryptococcus neoformans Under Low Oxygen Conditions and Tolerance to Cobalt Chloride. PLoS Pathogens, 2008, 4, e1000155.	4.7	63
70	<i>Cryptococcus neoformans</i> Strains and Infection in Apparently Immunocompetent Patients, China. Emerging Infectious Diseases, 2008, 14, 755-762.	4.3	204
71	Genes Differentially Expressed in Conidia and Hyphae of Aspergillus fumigatus upon Exposure to Human Neutrophils. PLoS ONE, 2008, 3, e2655.	2.5	124
72	Human Polymorphonuclear Leukocytes Inhibit <i>Aspergillus fumigatus</i> Conidial Growth by Lactoferrin-Mediated Iron Depletion. Journal of Immunology, 2007, 178, 6367-6373.	0.8	164

#	Article	IF	CITATIONS
7 3	Role of <i>laeA</i> in the Regulation of <i>alb1</i> , <i>gliP</i> , Conidial Morphology, and Virulence in <i>Aspergillus fumigatus</i> Eukaryotic Cell, 2007, 6, 1552-1561.	3.4	104
74	Identification and Characterization of CPS1 as a Hyaluronic Acid Synthase Contributing to the Pathogenesis of Cryptococcus neoformans Infection. Eukaryotic Cell, 2007, 6, 1486-1496.	3.4	88
7 5	Gliotoxin Is a Virulence Factor of Aspergillus fumigatus: gliP Deletion Attenuates Virulence in Mice Immunosuppressed with Hydrocortisone. Eukaryotic Cell, 2007, 6, 1562-1569.	3.4	225
76	TUP1 disruption in Cryptococcus neoformans uncovers a peptide-mediated density-dependent growth phenomenon that mimics quorum sensing. Molecular Microbiology, 2007, 64, 591-601.	2.5	86
77	Sre1p, a regulator of oxygen sensing and sterol homeostasis, is required for virulence in Cryptococcus neoformans. Molecular Microbiology, 2007, 64, 614-629.	2.5	183
78	Cobalt chloride, a hypoxiaâ€mimicking agent, targets sterol synthesis in the pathogenic fungus <i>Cryptococcus neoformans </i> Molecular Microbiology, 2007, 65, 1018-1033.	2.5	74
79	Cryptotrichosporon anacardiigen. nov., sp. nov., a new trichosporonoid capsulate basidiomycetous yeast from Nigeria that is able to form melanin on niger seed agar. FEMS Yeast Research, 2007, 7, 339-350.	2.3	45
80	Do major species concepts support one, two or more species withinCryptococcus neoformans?. FEMS Yeast Research, 2006, 6, 574-587.	2.3	222
81	Identification of a novel gene, URE2, that functionally complements a urease-negative clinical strain of Cryptococcus neoformans. Microbiology (United Kingdom), 2006, 152, 3723-3731.	1.8	12
82	Cas3p Belongs to a Seven-Member Family of Capsule Structure Designer Proteins. Eukaryotic Cell, 2004, 3, 1513-1524.	3.4	59
83	Cryptococcal Yeast Cells Invade the Central Nervous System via Transcellular Penetration of the Blood-Brain Barrier. Infection and Immunity, 2004, 72, 4985-4995.	2.2	228
84	Cryptococcus neoformans with a Mutation in the Tetratricopeptide Repeat-Containing Gene, CCN1, Causes Subcutaneous Lesions but Fails To Cause Systemic Infection. Infection and Immunity, 2003, 71, 1988-1994.	2.2	18
85	Molecular Analysis of CPR α, a MAT α-Specific Pheromone Receptor Gene of Cryptococcus neoformans. Eukaryotic Cell, 2002, 1, 432-439.	3.4	48
86	(1557) Proposal to conserve the name Cryptococcus gattii against C. hondurianus and C. bacillisporus (Basidiomycota, Hymenomycetes, Tremellomycetidae). Taxon, 2002, 51, 804-806.	0.7	281
87	A novel episomal shuttle vector for transformation of Cryptococcus neoformans with the ccd Bgene as a positive selection marker in bacteria. FEMS Microbiology Letters, 2000, 187, 41-45.	1.8	32
88	A novel episomal shuttle vector for transformation of Cryptococcus neoformans with the ccdB gene as a positive selection marker in bacteria. FEMS Microbiology Letters, 2000, 187, 41-45.	1.8	2
89	Structure of the O-deacetylated glucuronoxylomannan from Cryptococcus neoformans Cap70 as determined by 2D NMR spectroscopy. Carbohydrate Research, 1996, 283, 95-110.	2.3	37
90	The major capsular polysaccharide of Cryptococcus neoformans serotype B. Carbohydrate Research, 1992, 233, 271-272.	2.3	9

#	Article	IF	Citations
91	Structural variability in the glucuronoxylomannan of Cryptococcus neoformans serotype A isolates determined by 13C NMR spectroscopy. Carbohydrate Research, 1992, 233, 205-218.	2.3	49
92	Determination of viability of <i>Histoplasma capsulatum </i> yeast cells grown <i>in vitro </i> comparison between dye and colony count methods. Medical Mycology, 1987, 25, 107-114.	0.7	12
93	Capsular polysaccharides from a parent strain and from a possible, mutant strain of cryptococcus neoformans serotype A. Carbohydrate Research, 1981, 95, 237-247.	2.3	59
94	Structural studies on the major, capsular polysaccharide from Cryptococcus bacillisporus serotype B. Carbohydrate Research, 1980, 82, 103-111.	2.3	61
95	The structure of the capsular polysaccharide from crytococcus neoformans serotype d. Carbohydrate Research, 1979, 73, 183-192.	2.3	75
96	Systematics of the Genus Cryptococcus and Its Type Species C. neoformans. , 0, , 1-15.		12
97	The Mating-Type Locus of Cryptococcus: Evolution of Gene Clusters Governing Sex Determination and Sexual Reproduction from the Phylogenomic Perspective. , 0, , 139-149.		7
98	A Role for Mating in Cryptococcal Virulence. , 0, , 167-174.		3
99	Sensing Extracellular Signals in Cryptococcus neoformans. , 0, , 175-187.		2
100	Drug Resistance in <i>Cryptococcus</i> : Epidemiology and Molecular Mechanisms. , 0, , 203-216.		3
101	Environmental Niches for <i>Cryptococcus neoformans </i> and <i>Cryptococcus gattii </i> ., 0, , 235-259.		19
102	The History of Cryptococcus and Cryptococcosis. , 0, , 17-26.		5
103	Cryptococcosis in Africa., 0,, 269-285.		3
104	Cryptococcosis in Asia., 0,, 287-297.		3
105	Biosynthesis and Genetics of the Cryptococcus Capsule. , 0, , 27-41.		4
106	Invasion of <i>Cryptococcus</i> into the Central Nervous System., 0,, 465-471.		6
107	Cryptococcosis in Experimental Animals: Lessons Learned. , 0, , 473-488.		2
108	The Architecture and Antigenic Composition of the Polysaccharide Capsule., 0,, 43-54.		8

#	Article	IF	CITATIONS
109	Diagnostic Approach Based on Capsular Antigen, Capsule Detection, \hat{l}^2 -Glucan, and DNA Analysis. , 0, , 547-564.		5
110	Clinical Perspectives on <i>Cryptococcus neoformans </i> and <i>Cryptococcus gattii </i> : Implications for Diagnosis and Management., 0,, 595-606.		16
111	Sexual Reproduction of Cryptococcus. , 0, , 81-96.		3
112	Population Structure and Ecology of Cryptococcus neoformans and Cryptococcus gattii., 0,, 97-111.		5
113	The Cryptococcus Genomes: Tools for Comparative Genomics and Expression Analysis. , 0, , 113-126.		2
114	Virulence Mechanisms of Cryptococcus gattii: Convergence and Divergence., 0,, 189-201.		0
115	G-Protein Signaling Pathways: Regulating Morphogenesis and Virulence of Cryptococcus., 0,, 151-165.		1
116	Genetic and Genomic Approaches to Cryptococcus Environmental and Host Responses., 0, , 127-137.		1
117	Cryptococcus neoformans: Nonvertebrate Hosts and the Emergence of Virulence. , 0, , 261-267.		O
118	Intracellular Replication and Exit Strategies. , 0, , 441-450.		1