Carlos Duque

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8799840/publications.pdf

Version: 2024-02-01

		159573	206102
176	3,378	30	48
papers	citations	h-index	g-index
170	170	170	0.40
178	178	178	849
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	Layered graphene/GaS van der Waals heterostructure: Controlling the electronic properties and Schottky barrier by vertical strain. Applied Physics Letters, 2018, 113, .	3.3	171
2	Stress effects on shallow-donor impurity states in symmetrical GaAs/AlxGa1 \hat{a} °xAsdouble quantum wells. Physical Review B, 2004, 69, .	3.2	141
3	Nonlinear optical rectification and optical absorption in GaAs–Ga1–xAlxAs asymmetric double quantum wells: Combined effects of applied electric and magnetic fields and hydrostatic pressure. Journal of Luminescence, 2011, 131, 1502-1509.	3.1	119
4	Linear and nonlinear optical properties in a semiconductor quantum well under intense laser radiation: Effects of applied electromagnetic fields. Journal of Luminescence, 2012, 132, 901-913.	3.1	94
5	Intense laser effects on nonlinear optical absorption and optical rectification in single quantum wells under applied electric and magnetic field. Applied Surface Science, 2011, 257, 2313-2319.	6.1	91
6	Effects of applied magnetic fields and hydrostatic pressure on the optical transitions in self-assembled InAs/GaAs quantum dots. Journal of Physics Condensed Matter, 2006, 18, 1877-1884.	1.8	84
7	Magneto-optical transport properties of monolayer transition metal dichalcogenides. Physical Review B, 2020, 101, .	3.2	69
8	Donor-impurity related binding energy and photoinization cross-section in quantum dots: electric and magnetic fields and hydrostatic pressure effects. European Physical Journal B, 2009, 72, 521-529.	1.5	68
9	Simultaneous effects of hydrostatic stress and an electric field on donors in a GaAs-(Ga, Al)As quantum well. Journal of Physics Condensed Matter, 2002, 14, 987-995.	1.8	61
10	Hydrostatic pressure and electric field effects and nonlinear optical rectification of confined excitons in spherical quantum dots. Superlattices and Microstructures, 2011, 49, 264-268.	3.1	53
11	Nonlinear optical rectification and optical absorption in GaAs–Ga1â⁻'xAlxAs double quantum wells under applied electric and magnetic fields. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 1405-1410.	2.7	51
12	Intense laser effects on donor impurity in a cylindrical single and vertically coupled quantum dots under combined effects of hydrostatic pressure and applied electric field. Applied Surface Science, 2010, 256, 7406-7413.	6.1	50
13	Optical nonlinearities associated to applied electric fields in parabolic two-dimensional quantum rings. Journal of Luminescence, 2013, 143, 81-88.	3.1	49
14	Effects of an applied electric field on the binding energy of shallow donor impurities in GaAs low-dimensional systems. Journal of Physics Condensed Matter, 1997, 9, 5977-5987.	1.8	47
15	Linear and nonlinear magneto-optical properties of monolayer phosphorene. Journal of Applied Physics, 2017, 121, .	2.5	47
16	Donor impurity in vertically-coupled quantum-dots under hydrostatic pressure and applied electric field. European Physical Journal B, 2010, 73, 309-319.	1.5	46
17	Hydrostatic pressure, impurity position and electric and magnetic field effects on the binding energy and photo-ionization cross section of a hydrogenic donor impurity in an InAs PA¶schl-Teller quantum ring. European Physical Journal B, 2011, 84, 265-271.	1.5	46
18	Simultaneous effects of electron-hole correlation, hydrostatic pressure, and temperature on the third harmonic generation in parabolic GaAs quantum dots. Journal of Nanoparticle Research, 2011, 13, 6103-6112.	1.9	46

#	Article	IF	Citations
19	Electronic states in GaAs-(Al,Ga)As eccentric quantum rings under nonresonant intense laser and magnetic fields. Scientific Reports, 2019, 9, 1427.	3.3	46
20	Hydrostatic pressure, electric and magnetic field effects on shallow donor impurity states and photoionization cross section in cylindrical GaAs–Ga _{1–<i>x</i>} Al <i>_x</i> As quantum dots. Physica Status Solidi (B): Basic Research, 2009, 246, 626-629.	1.5	44
21	Donor-related density of states and polarizability in a GaAs-(Ga, Al)As quantum-well under hydrostatic pressure and applied electric field. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 652-656.	0.8	43
22	Effects of applied electric fields on the infrared transitions between hydrogenic states in GaAs low-dimensional systems. Physical Review B, 1997, 55, 10721-10728.	3.2	42
23	Comparative study of the hydrostatic pressure and temperature effects on the impurity-related optical properties in single and double GaAs–Ga1–xAlxAs quantum wells. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 298-300.	0.8	42
24	Properties of the second and third harmonics generation in a quantum disc with inverse square potential. A modeling for nonlinear optical responses of a quantum ring. Journal of Luminescence, 2013, 138, 53-60.	3.1	42
25	Donor impurity related optical and electronic properties of cylindrical GaAs-AlxGa1â^x As quantum dots under tilted electric and magnetic fields. Scientific Reports, 2020, 10, 9155.	3.3	42
26	Effects of hydrostatic pressure and electric field on the nonlinear optical rectification of strongly confined electron–hole pairs in GaAs quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 1002-1006.	2.7	34
27	Combined effects of intense laser field and applied electric field on exciton states in GaAs quantum wells: Transition from the single to double quantum well. Physica Status Solidi (B): Basic Research, 2012, 249, 118-127.	1.5	33
28	Optical coefficients in a semiconductor quantum ring: Electric field and donor impurity effects. Optical Materials, 2016, 60, 148-158.	3.6	33
29	Theoretical study of phosphorene multilayers: optical properties and small organic molecule physisorption. Journal of Materials Science, 2018, 53, 5103-5113.	3.7	33
30	Effects of Geometry on the Electronic Properties of Semiconductor Elliptical Quantum Rings. Scientific Reports, 2018, 8, 13299.	3.3	33
31	Impurity related optical properties in tuned quantum dot/ring systems. Philosophical Magazine, 2019, 99, 2457-2486.	1.6	33
32	Donor impurity-related linear and nonlinear intraband optical absorption coefficients in quantum ring: effects of applied electric field and hydrostatic pressure. Nanoscale Research Letters, 2012, 7, 538.	5.7	31
33	Electron-related nonlinearities in GaAs–Ga1â^'xAlxAs double quantum wells under the effects of intense laser field and applied electric field. Journal of Luminescence, 2013, 135, 301-311.	3.1	31
34	Excitons in coupled quantum dots: hydrostatic pressure and electric field effects. Physica Status Solidi (B): Basic Research, 2009, 246, 630-634.	1.5	30
35	Photoionization cross section and binding energy of single dopant in hollow cylindrical core/shell quantum dot. Journal of Applied Physics, 2017, 121, .	2.5	30
36	Hydrostatic pressure effects on the Γ–X conduction band mixing and the binding energy of a donor impurity in GaAs–Ga1–xAlxAs quantum wells. Physica Status Solidi (B): Basic Research, 2007, 244, 1964-1970.	1.5	29

#	Article	IF	CITATIONS
37	Intense laser field effects on the linear and nonlinear intersubband optical properties of a semi-parabolic quantum well. European Physical Journal B, 2011, 82, 13-17.	1.5	29
38	Linear and nonlinear magneto-optical properties of monolayer MoS2. Journal of Applied Physics, 2018, 123, .	2.5	29
39	Pyramidal core-shell quantum dot under applied electric and magnetic fields. Scientific Reports, 2020, 10, 8961.	3.3	29
40	Binding energy and density of shallow impurity states in GaAs–(Ga, Al)As quantum wells: effects of an applied hydrostatic stress. Semiconductor Science and Technology, 2003, 18, 718-722.	2.0	28
41	Γ-X mixing in GaAs-Ga1-xAlxAs quantum wells under hydrostatic pressure. European Physical Journal B, 2008, 62, 257-261.	1.5	28
42	Donor impurity-related photoionization cross section in GaAs cone-like quantum dots under applied electric field. Philosophical Magazine, 2017, 97, 1445-1463.	1.6	27
43	Intense laser field effect on impurity states in a semiconductor quantum well: transition from the single to double quantum well potential. European Physical Journal B, 2011, 81, 441-449.	1.5	26
44	Linear and nonlinear magneto-optical absorption coefficients and refractive index changes in graphene. Optical Materials, 2017, 69, 328-332.	3.6	26
45	Intense laser field-induced nonlinear optical properties of Morse quantum well. Physica Status Solidi (B): Basic Research, 2017, 254, 1600457.	1.5	26
46	Stark shift and exciton binding energy in parabolic quantum dots: hydrostatic pressure, temperature, and electric field effects. Philosophical Magazine, 2021, 101, 753-775.	1.6	26
47	BINDING ENERGY FOR A SHALLOW DONOR IMPURITY IN GaAs–(Ga, Al)As QUANTUM WELLS UNDER HYDROSTATIC PRESSURE AND APPLIED ELECTRIC FIELD. Surface Review and Letters, 2002, 09, 1753-1756.	1.1	25
48	Effects of hydrostatic stress on the density of impurity states and donor-related optical absorption spectra in GaAs-(Ga,Al)As quantum wells. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 648-651.	0.8	25
49	Binding energy and photoionization cross-section in GaAs quantum well-wires and quantum dots: magnetic field and hydrostatic pressure effects. Brazilian Journal of Physics, 2006, 36, 387-390.	1.4	24
50	Optical absorption and refractive index changes in a semiconductor quantum ring: Electric field and donor impurity effects. Physica Status Solidi (B): Basic Research, 2016, 253, 744-754.	1.5	24
51	Electronic, optical, and thermoelectric properties of Janus In-based monochalcogenides. Journal of Physics Condensed Matter, 2021, 33, 225503.	1.8	24
52	Donor-related optical absorption spectra for a GaAs-Ga0.7Al0.3As double quantum well under hydrostatic pressure and applied electric field effects. Brazilian Journal of Physics, 2006, 36, 862-865.	1.4	23
53	The nonlinear optical absorption and corrections to the refractive index in a GaAs nâ€type deltaâ€doped field effect transistor under hydrostatic pressure. Physica Status Solidi (B): Basic Research, 2012, 249, 146-152.	1.5	23
54	Calculation of direct and indirect excitons in GaAsâ •Ga1â · xAlxAscoupled double quantum wells: The effects of in-plane magnetic fields and growth-direction electric fields. Physical Review B, 2007, 76, .	3.2	21

#	Article	IF	CITATIONS
55	Study of the electronic properties of GaAsâ€based atomic layer doped field effect transistor (ALDâ€FET) under the influence of hydrostatic pressure. Physica Status Solidi (B): Basic Research, 2009, 246, 581-585.	1.5	21
56	The effects of the intense laser field on bound states in Ga \times In1- \times N \times As1- \times N/GaAs single quantum well. European Physical Journal B, 2011, 80, 89-93.	1.5	21
57	Magnetic field effects on intraband transitions in elliptically polarized laser-dressed quantum rings. Optical Materials, 2019, 91, 309-320.	3.6	21
58	Donor-related photoionization cross-section of GaAs–(Ga, Al)As quantum dots: hydrostatic pressure effects. Physica Status Solidi (B): Basic Research, 2004, 241, 2440-2443.	1.5	20
59	Hydrostatic pressure effects on the donor impurity-related photoionization cross-section in cylindrical-shaped GaAs/GaAlAs quantum well wires. Physica Status Solidi (B): Basic Research, 2004, 241, 3311-3317.	1.5	20
60	Energy spectra of exciton states in disk-shaped GaAs-Ga1-xAlxAs quantum dots under growth-direction magnetic fields. European Physical Journal B, 2007, 56, 303-309.	1.5	20
61	Combined effects of hydrostatic pressure and electric field on the donor binding energy and polarizability in laterally coupled double InAs/GaAs quantum-well wires. Applied Surface Science, 2010, 256, 7234-7241.	6.1	19
62	Exciton-related nonlinear optical properties in cylindrical quantum dots with asymmetric axial potential: combined effects of hydrostatic pressure, intense laser field, and applied electric field. Nanoscale Research Letters, 2012, 7, 508.	5.7	19
63	Photonic band structure evolution of a honeycomb lattice in the presence of an external magnetic field. Journal of Applied Physics, 2009, 105, 034303.	2.5	18
64	Exciton-related nonlinear optical absorption and refractive index change in GaAs–Ga1â^'xAlxAs double quantum wells. Physica B: Condensed Matter, 2013, 409, 78-82.	2.7	18
65	Hydrostatic-pressure effects on the correlated electron–hole transition energies in GaAs–Ga1–xAlxAs semiconductor quantum wells. Physica Status Solidi (B): Basic Research, 2006, 243, 635-640.	1.5	17
66	Optical transition in self-assembled InAs/GaAs quantum lens under high hydrostatic pressure. Journal of Applied Physics, 2009, 105, .	2.5	17
67	Shallowâ€impurityâ€related binding energy and linear optical absorption in ringâ€shaped quantum dots and quantumâ€well wires under applied electric field. Physica Status Solidi (B): Basic Research, 2015, 252, 786-794.	1.5	17
68	The two-dimensional square and triangular photonic lattice under the effects of magnetic field, hydrostatic pressure, and temperature. Optical and Quantum Electronics, 2012, 44, 375-392.	3.3	16
69	Refractive index changes and optical absorption involving 1s–1p excitonic transitions in quantum dot under pressure and temperature effects. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	16
70	Electric field effects on excitons in cylindrical quantum dots with asymmetric axial potential. Influence on the nonlinear optical properties. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 1936-1944.	2.7	15
71	Nonlinear optical properties in an asymmetric double Î-doped quantum well with a Schottky barrier: Electric field effects. Physica Status Solidi (B): Basic Research, 2014, 251, 415-422.	1.5	15
72	Excitonâ€related optical properties in zincâ€blende GaN/InGaN quantum wells under hydrostatic pressure. Physica Status Solidi (B): Basic Research, 2015, 252, 670-677.	1.5	15

#	Article	IF	Citations
73	Electronic state and photoionization cross section of a single dopant in GaN/InGaN core/shell quantum dot under magnetic field and hydrostatic pressure. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	15
74	Donor impurity energy and optical absorption in spherical sector quantum dots. Heliyon, 2020, 6, e03194.	3.2	15
75	Electronic states in n-type GaAs delta-doped quantum wells under hydrostatic pressure. Brazilian Journal of Physics, 2006, 36, 866-868.	1.4	15
76	Infinite potential barrier and hydrostatic pressure effects on impurity-related optical absorption spectra in GaAs double quantum wells. Brazilian Journal of Physics, 2006, 36, 350-353.	1.4	14
77	Optical characterization of laser-driven double Morse quantum wells. Heliyon, 2019, 5, e02022.	3.2	14
78	Impurity-related optical response in a 2D and 3D quantum dot with Gaussian confinement under intense laser field. Philosophical Magazine, 2020, 100, 619-641.	1.6	14
79	Simultaneous effects of temperature, pressure, polaronic mass, and conduction band non-parabolicity on a single dopant in conical GaAs-Al _x Ga _{1â€"x} As quantum dots. Physica Scripta, 2021, 96, 065808.	2.5	14
80	Electronic and optical properties of a \$\$D_2^+\$\$ complex in two-dimensional quantum dots with Gaussian confinement potential. European Physical Journal Plus, 2022, 137, 1.	2.6	14
81	xmins:mml="nttp://www.w3.org/1998/Math/MathMil" display="inline"> <mml:mrow><mml:mi mathvariant="normal">Ga<mml:mi mathvariant="normal">As<mml:mtext>a^'</mml:mtext><mml:msub><mml:mi mathvariant="normal">Ga<mml:mrow><mml:mn>1</mml:mn><mml:mo>a^'</mml:mo><mml:mo><mml:mi>x<td>3.2 mml:mi><</td><td>13 /mml:mrow></td></mml:mi></mml:mo></mml:mrow></mml:mi </mml:msub></mml:mi </mml:mi </mml:mrow>	3.2 mml:mi><	13 /mml:mrow>
82	Exciton properties in zincblende InGaN-GaN quantum wells under the effects of intense laser fields. Nanoscale Research Letters, 2012, 7, 492.	5.7	13
83	Donor impurity states and related terahertz range nonlinear optical response in GaN cylindrical quantum wires: Effects of external electric and magnetic fields. Journal of Applied Physics, 2014, 115, 213105.	2.5	13
84	Optical Absorption and Electroabsorption Related to Electronic and Single Dopant Transitions in Holey Elliptical GaAs Quantum Dots. Physica Status Solidi (B): Basic Research, 2018, 255, 1700470.	1.5	13
85	Electronic and optical properties of layered van der Waals heterostructure based on MS ₂ (M = Mo, W) monolayers. Materials Research Express, 2019, 6, 065060.	1.6	13
86	Linear and nonlinear optical properties of a single dopant in GaN conical quantum dot with spherical cap. Philosophical Magazine, 2020, 100, 2503-2523.	1.6	13
87	Effect of magnetic field on donor impurity-related photoionisation cross-section in multilayered quantum dot. Philosophical Magazine, 2021, 101, 2614-2633.	1.6	13
88	A theoretical study of exciton energy levels in laterally coupled quantum dots. Journal of Physics Condensed Matter, 2009, 21, 405801.	1.8	12
89	Excitons in a cylindrical GaAs Pöschl–Teller quantum dot. Physica Status Solidi (B): Basic Research, 2011, 248, 1412-1419.	1.5	12
90	Electron and donor-impurity-related Raman scattering and Raman gain in triangular quantum dots under an applied electric field. European Physical Journal B, 2016, 89, 1.	1.5	12

#	Article	IF	CITATIONS
91	Symmetric and asymmetric GaAs/Al0.3Ga0.7As double quantum well subjected to hydrostatic pressure and applied electric field. Physica Status Solidi (B): Basic Research, 2004, 241, 3224-3230. Binding energy of a donor impurity in GaAs < mml:math	1.5	11
92	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si0011.gif" overflow="scroll"> <mml:mi>(/mml:mi><mml:mi mathvariant="normal">-</mml:mi><mml:mi>doped</mml:mi> systems under electric and magnetic fields, and hydrostatic pressure. Physica E: Low-Dimensional Systems and Nanostructures,</mml:mi>	2.7	11
93	2012, 44, 1335-1341. Exciton-related energies of the 1s-like states of excitons in GaAs-Ga1â^'xAlxAs double quantum wells. Journal of Luminescence, 2012, 132, 2525-2530.	3.1	11
94	Excitons in cylindrical GaAs–Ga1â^'xAlxAs quantum dots under applied electric field. Physica B: Condensed Matter, 2012, 407, 2351-2357.	2.7	11
95	The impact of hydrostatic pressure and temperature on the binding energy, linear, third-order nonlinear, and total optical absorption coefficients and refractive index changes of a hydrogenic donor impurity confined in GaAs/AlxGa1â°'xAs double quantum dots. European Physical Journal Plus, 2022. 137.	2.6	11
96	Effects of crossed electric and magnetic fields on the electronic and excitonic states in bulk GaAs and GaAsâ-Ga1â^'xAlxAsquantum wells. Physical Review B, 2007, 75, .	3.2	10
97	Nonlinear absorption coefficient and relative refraction index change for an asymmetrical double <mml:math altimg="si0022.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>i'</mml:mi></mml:math> -doped quantum well in GaAs with a Schottky barrier potential. Physica B: Condensed Matter. 2013. 424. 13-19.	2.7	10
98	Effect of Intense Laser Field in Gaussian Quantum Well With Positionâ€Dependent Effective Mass. Physica Status Solidi (B): Basic Research, 2019, 256, 1800758.	1.5	10
99	Study of direct and indirect exciton states in GaAs-Ga1â^'xAlxAs quantum dots under the effects of intense laser field and applied electric field. European Physical Journal B, 2012, 85, 1.	1.5	9
100	Highâ€pressure effects on the intersubband optical absorption coefficient and relative refractive index change in an asymmetric double â€doped GaAs quantum well. Physica Status Solidi (B): Basic Research, 2015, 252, 683-688.	1.5	9
101	Fundamental exciton transitions in SiO2/Si/SiO2 cylindrical core/shell quantum dot. Journal of Applied Physics, 2018, 124, 144303.	2.5	9
102	Mid-Infrared linear optical transitions in $\$$ delta $\$$ Î $'$ -doped AlGaAs/GaAs triple-quantum well. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	9
103	Binding energy and optical absorption of donor impurity states in "12-6―tuned GaAs/GaAlAs double quantum well under the external fields. Physica B: Condensed Matter, 2019, 554, 72-78.	2.7	9
104	Shallow Donor Impurity States with Excitonic Contribution in GaAs/AlGaAs and CdTe/CdSe Truncated Conical Quantum Dots under Applied Magnetic Field. Nanomaterials, 2021, 11, 2832.	4.1	9
105	Magnetoabsorption spectra of intraexcitonic transitions in GaAs-(Ga,Al)As semiconductor quantum wells. Journal of Applied Physics, 2002, 92, 1227-1231.	2.5	8
106	Magnetoexciton transitions in GaAs-Ga1-xAlxAs quantum wells. Journal of Physics Condensed Matter, 2002, 14, 1021-1033.	1.8	8
107	Carrier states and optical response in core–shell-like semiconductor nanostructures. Philosophical Magazine, 2017, 97, 368-388.	1.6	8
108	Optical Absorption in Periodic Graphene Superlattices: Perpendicular Applied Magnetic Field and Temperature Effects. Annalen Der Physik, 2018, 530, 1700414.	2.4	8

#	Article	IF	CITATIONS
109	Interplay between normal and abnormal stark shift according to the quantum dot spherical core/shell size ratio. Philosophical Magazine Letters, 2018, 98, 252-265.	1.2	8
110	Size or shape – What matters most at the nanoscale?. Computational Materials Science, 2019, 165, 13-22.	3.0	8
111	Self-Consistent SchrĶdinger-Poisson Study of Electronic Properties of GaAs Quantum Well Wires with Various Cross-Sectional Shapes. Nanomaterials, 2021, 11, 1219.	4.1	8
112	Donor impurity states in coupled quantum well wires under hydrostatic pressure and applied electric field. Superlattices and Microstructures, 2011, 49, 275-278.	3.1	7
113	Nonlinear optical absorption and optical rectification in near-surface double quantum wells: combined effects of electric, magnetic fields and hydrostatic pressure. Optical and Quantum Electronics, 2012, 44, 355-372.	3.3	7
114	Exploring graphene superlattices: Magneto-optical properties. Journal of Applied Physics, 2017, 121, .	2.5	7
115	On the electronic states in lens-shaped quantum dots. Physica Status Solidi (B): Basic Research, 2017, 254, 1700144.	1.5	7
116	Combined effects of electric field and hydrostatic pressure on electron states in asymmetric GaAs/(Ga, Al) triple quantum dots. Superlattices and Microstructures, 2011, 49, 269-274.	3.1	6
117	Influence of conduction-band non-parabolicity on terahertz intersubband Raman gain in GaAs/InGaAs step asymmetric quantum wells. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	6
118	First Study on the Electronic and Donor Atom Properties of the Ultra-Thin Nanoflakes Quantum Dots. Nanomaterials, 2022, 12, 966.	4.1	6
119	Hydrostatic pressure and electric-field effects on the shallow donor impurity states in GaAs-Ga0.7Al0.3As quantum-well wires. Brazilian Journal of Physics, 2006, 36, 944-947.	1.4	5
120	Effects of hydrostatic pressure on the electron g_{parallel} factor and ⟨i⟩g⟨/i⟩-factor anisotropy in GaAs–(Ga, Al)As quantum wells under magnetic fields. Journal of Physics Condensed Matter, 2008, 20, 465220.	1.8	5
121	Shallow-donor impurity in coupled GaAs/Ga1â^'xAlxAs quantum well wires: hydrostatic pressure and applied electric field effects. Physica Status Solidi (B): Basic Research, 2010, 247, 1778-1785.	1.5	5
122	Oscillator strength and quantum-confined Stark effect of excitons in a thin PbS quantum disk. International Journal of Modern Physics B, 2018, 32, 1750266.	2.0	5
123	Current's Fluctuations through Molecular Wires Composed of Thiophene Rings. Molecules, 2018, 23, 881.	3.8	5
124	Structural, electronic, and transport properties of Janus GalnX ₂ (X = S, Se, Te) monolayers: first-principles study. Journal of Physics Condensed Matter, 2022, 34, 045501.	1.8	5
125	Donor impurity-related optical absorption spectra in GaAs-Ga1–xAlxAs quantum wells: hydrostatic pressure andΓ –X conduction band mixing effects. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 418-420.	0.8	4
126	Impurity-related optical properties in rectangular-transverse section GaAs–Ga1–xAlxAs quantum well wires: Hydrostatic pressure and electric field effects. Physica Status Solidi (B): Basic Research, 2007, 244, 70-75.	1.5	4

#	Article	IF	CITATIONS
127	The formation of indirect excitons in atomic layer doped systems. Superlattices and Microstructures, 2015, 87, 32-37.	3.1	4
128	Electron-related optical properties in T-shaped AlxGa1â^'xAs/GaAs quantum wires and dots. European Physical Journal B, 2015, 88, 1.	1.5	4
129	Excitons in spherical quantum dots revisited: analysis of colloidal nanocrystals. European Physical Journal B, 2020, 93, 1.	1.5	4
130	Theoretical study of electronic and optical properties in doped quantum structures with Razavy confining potential: effects of external fields. Journal of Computational Electronics, 2022, 21, 378-395.	2.5	4
131	Exciton diamagnetic shifts in GaAs–Ga1â^'xAlxAs quantum dots and ultrathin quantum wells. Journal of Physics Condensed Matter, 2007, 19, 216224.	1.8	3
132	Hydrostatic pressure and growth-direction magnetic field effects on the exciton states in coupled GaAs–(Ga, Al)As quantum wells. Journal of Physics Condensed Matter, 2007, 19, 256202.	1.8	3
133	Excited states and spontaneous transition lifetimes of donor impurities in quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 360-362.	0.8	3
134	Effect of applied hydrostatic pressure on the eâ€"h ground transition in self-assembled InAs/GaAs quantum lens. Physica Status Solidi (B): Basic Research, 2007, 244, 48-52.	1.5	3
135	Electronic states in double quantum well-wires with potential W-profile: combined effects of hydrostatic pressure and electric field. Journal of Materials Science, 2010, 45, 5045-5053.	3.7	3
136	Effects of hydrostatic pressure, temperature, electric field and aluminum concentration on the electronic states in GaAs/Ga _{1â^'x} Al _x As concentric double quantum rings. Journal of Physics: Conference Series, 2012, 350, 012016.	0.4	3
137	Donor Impurity-Related Optical Absorption in GaAs Elliptic-Shaped Quantum Dots. Journal of Nanomaterials, 2017, 2017, 1-18.	2.7	3
138	Quasiperiodic graphene superlattices: Self-similarity of the Landau level spectra. Solid State Communications, 2018, 284-286, 93-95.	1.9	3
139	Intersubband Raman gain in strained zincblende III-nitride-based step asymmetric quantum wells: non-parabolicity effects. Optical and Quantum Electronics, 2018, 50, 1.	3.3	3
140	Correlated electron-hole transitions in bulk GaAs and GaAs-(Ga,Al)As quantum wells: effects of applied electric and in-plane magnetic fields. Brazilian Journal of Physics, 2006, 36, 1038-1041.	1.4	3
141	Effect of position-dependent effective mass on donor impurity- and exciton-related electronic and optical properties of 2D Gaussian quantum dots. European Physical Journal Plus, 2022, 137, 1.	2.6	3
142	Effects of Intense Laser Field on Electronic and Optical Properties of Harmonic and Variable Degree Anharmonic Oscillators. Nanomaterials, 2022, 12, 1620.	4.1	3
143	Study of Electronic and Transport Properties in Double-Barrier Resonant Tunneling Systems. Nanomaterials, 2022, 12, 1714.	4.1	3
144	Effects of hydrostatic pressure on the conductionâ€electron ⟨i⟩g⟨ i⟩ â€factor in GaAs–Ga⟨sub⟩1–⟨i⟩x⟨ i⟩⟨ sub⟩Al⟨i⟩⟨sub⟩x⟨ sub⟩⟨ i⟩ As quantum wells. Physica Status Solidi (B): Basic Research, 2009, 246, 648-651.	1.5	2

#	Article	IF	Citations
145	Hydrostatic-pressure-induced î"-X mixing in delta-doped Al _x Ga _{1-x} As. Journal of Physics: Conference Series, 2009, 167, 012030.	0.4	2
146	Electron Raman Scattering and Raman Gain in Pyramidal Semiconductor Quantum Dots. Journal of Nanoscience and Nanotechnology, 2017, 17, 1140-1148.	0.9	2
147	Background impurities and a delta-doped QW. Part I: Center doping. Semiconductor Science and Technology, 2019, 34, 125009.	2.0	2
148	Hydrogenic Impurity States in a Delta-Layer Within Quantum Wells in a Transversal Electric Field. , 2020, , .		2
149	Magneto-optical properties of Fibonacci graphene superlattices. European Physical Journal B, 2020, 93, 1.	1.5	2
150	Optical Transitions in Strained Wurtzite GaN Ultrathin Quantum Disk Under Hydrostatic Pressure Effects. Current Nanoscience, 2017, 13, .	1.2	2
151	Shallow-donor impurity effects on the far infrared electron–electron optical absorption coefficient in single and core/shell spherical quantum dots with Konwent-like confinement potential. Optical and Quantum Electronics, 2022, 54, .	3.3	2
152	Hole subband structure in single and double p-typel´-doped diamond quantum wells. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 415-417.	0.8	1
153	Influence of electric field, hydrostatic pressure and temperature on the electronic states in a Pöschl-Teller quantum well. Journal of Contemporary Physics, 2010, 45, 258-261.	0.6	1
154	Binding energy and photoionization cross section of hydrogen-like donor impurity in cylindrical InAs PÃfÂfÃ,¶schl-Teller quantum layer in magnetic field. Proceedings of SPIE, 2010, , .	0.8	1
155	Impurity binding energy for δ-doped quantum well structures. Bulletin of Materials Science, 2014, 37, 1347-1351.	1.7	1
156	Light propagation in two-dimensional photonic crystals based on uniaxial polar materials: results on polaritonic spectrum. Applied Physics B: Lasers and Optics, 2017, 123, 1.	2.2	1
157	Background impurities in Si0.8Ge0.2/Si/Si0.8Ge0.2n-type δ-doped QW. Physica Status Solidi (B): Basic Research, 2017, 254, 1600464.	1.5	1
158	Effects of Hydrostatic Pressure and Electric Field on the Electron-Related Optical Properties in GaAs Multiple Quantum Well. Journal of Nanoscience and Nanotechnology, 2017, 17, 1247-1254.	0.9	1
159	A bandmixing treatment for multiband-coupled systems via nonlinear-eigenvalue scenario. Physica Scripta, 2019, 94, 035205.	2.5	1
160	Magnetoconductivity in quasiperiodic graphene superlattices. Scientific Reports, 2020, 10, 21284.	3.3	1
161	Electronic Transport Properties in GaAs/AlGaAs and InSe/InP Finite Superlattices under the Effect of a Non-Resonant Intense Laser Field and Considering Geometric Modifications. International Journal of Molecular Sciences, 2022, 23, 5169.	4.1	1
162	Hydrostatic pressure and electric field effect on electronic states in double quantum rings. Proceedings of SPIE, 1899, 8414, 112.	0.8	0

#	Article	IF	Citations
163	Exciton mixing and internal transitions of neutral magnetoexcitons in quantum wells. Physica Status Solidi (B): Basic Research, 2004, 241, 2434-2439.	1.5	0
164	Acceptor and donor impurity-related optical absorption spectra in double quantum wells: electric field and hydrostatic pressure effects. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 295-297.	0.8	0
165	Positron annihilation in structural vacancies in Alâ€rich NiAl alloys. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 3534-3537.	0.8	0
166	A 2D honeycomb photonic crystal under applied magnetic fields. Proceedings of SPIE, 2008, , .	0.8	0
167	Nonlinear absorption coefficient and relative refraction index change for an asymmetrical double delta-doped quantum well in GaAs with a Schottky barrier potential Materials Research Society Symposia Proceedings, 2012, 1479, 125-131.	0.1	0
168	Electromagnetic energy transport in finite photonic structures. Optics Express, 2014, 22, 12760.	3.4	0
169	Papers submitted to the 16th International Conference on the Physics of Light-Matter Coupling in Nanostructures, PLMCN 2015 (MedellÃn, Colombia). Superlattices and Microstructures, 2015, 87, 1-4.	3.1	0
170	Refraction index modulation induced with transverse electric field in double tunnel-coupled GaAs/AlGaAs quantum wells. Journal of Physics: Conference Series, 2015, 643, 012076.	0.4	0
171	Graphene superlattices: Effect of finite size on the density of states and conductance. Physica Status Solidi (B): Basic Research, 2017, 254, 1600313.	1.5	0
172	Donor Impurity States in Semiconductor Zincblende Nitride Quantum Systems as a Source of Nonlinear Optical Response. Journal of Nanoscience and Nanotechnology, 2017, 17, 1517-1524.	0.9	0
173	Magnetoâ€Optical Absorption in Graphene Superlattices: Dirac Point Effects. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1700347.	2.4	0
174	Effect of Sparse Doping in Barriers on the Energy Structure of Center-Delta-Doped QW., 2019, , .		0
175	Background impurities in a delta-doped QW. Part II: Edge doping. Semiconductor Science and Technology, 2021, 36, 045011.	2.0	0
176	Optical Transition Energies in a Group III–V–N Nano-dot. Springer Proceedings in Physics, 2017, , 335-339.	0.2	0