X Johne Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8799468/publications.pdf

Version: 2024-02-01

394286 377752 1,189 40 19 34 citations h-index g-index papers 41 41 41 1110 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Systemic L-ornithine supplementation specifically increases ovarian putrescine levels during ovulation in mice. Biology of Reproduction, 2021, , .	1.2	1
2	Coenzyme Q10 supplementation of human oocyte inÂvitro maturation reduces postmeiotic aneuploidies. Fertility and Sterility, 2020, 114, 331-337.	0.5	41
3	Can peri-ovulatory putrescine supplementation improve egg quality in older infertile women?. Journal of Assisted Reproduction and Genetics, 2019, 36, 395-402.	1.2	15
4	Putrescine supplementation during in vitro maturation of aged mouse oocytes improves the quality of blastocysts. Reproduction, Fertility and Development, 2017, 29, 1392.	0.1	14
5	Spindle function in <i>Xenopus</i> oocytes involves possible nanodomain calcium signaling. Molecular Biology of the Cell, 2016, 27, 3273-3283.	0.9	15
6	Targeting oocyte maturation to improve fertility in older women. Cell and Tissue Research, 2016, 363, 57-68.	1.5	23
7	The Majority of Resorptions in Old Mice Are Euploid. PLoS ONE, 2015, 10, e0143360.	1.1	3
8	Peri-ovulatory putrescine supplementation reduces embryo resorption in older mice. Human Reproduction, 2015, 30, 1867-1875.	0.4	16
9	Meiosis I inXenopusoocytes is not error-prone despite lacking spindle assembly checkpoint. Cell Cycle, 2014, 13, 1602-1606.	1.3	6
10	Deficiency of ovarian ornithine decarboxylase contributes to agingâ€related egg aneuploidy in mice. Aging Cell, 2013, 12, 42-49.	3.0	22
11	<i>Xenopus</i> oocyte meiosis lacks spindle assembly checkpoint control. Journal of Cell Biology, 2013, 201, 191-200.	2.3	44
12	Translation of incenp During Oocyte Maturation Is Required for Embryonic Development in Xenopus laevis1. Biology of Reproduction, 2012, 86, 161, 1-8.	1.2	5
13	Aurora B regulates spindle bipolarity in meiosis in vertebrate oocytes. Cell Cycle, 2012, 11, 2672-2680.	1.3	18
14	Polar body emission. Cytoskeleton, 2012, 69, 670-685.	1.0	18
15	Peri-ovulatory putrescine to reduce aneuploid conceptions. Aging, 2012, 4, 723-725.	1.4	4
16	The small GTPase Cdc42 promotes membrane protrusion during polar body emission via ARP2-nucleated actin polymerization. Molecular Human Reproduction, 2011, 17, 305-316.	1.3	58
17	Mini Golgi stacks participate in spindle assembly in acentrosomal mouse oocytes?. Cell Cycle, 2011, 10, 2622-2622.	1.3	1
18	Antiapoptotic Role for Ornithine Decarboxylase during Oocyte Maturation. Molecular and Cellular Biology, 2009, 29, 1786-1795.	1.1	22

#	Article	IF	Citations
19	Brefeldin A disrupts asymmetric spindle positioning in mouse oocytes. Developmental Biology, 2008, 313, 155-166.	0.9	43
20	Polar Body Emission Requires a RhoA Contractile Ring and Cdc42-Mediated Membrane Protrusion. Developmental Cell, 2008, 15, 386-400.	3.1	84
21	SIT1 is a betaine/proline transporter that is activated in mouse eggs after fertilization and functions until the 2-cell stage. Development (Cambridge), 2008, 135, 4123-4130.	1.2	46
22	MEK1/2 Regulates Microtubule Organization, Spindle Pole Tethering and Asymmetric Division During Mouse Oocyte Meiotic Maturation. Cell Cycle, 2007, 6, 330-338.	1.3	74
23	Cdc42 Activation Couples Spindle Positioning to First Polar Body Formation in Oocyte Maturation. Current Biology, 2006, 16, 214-220.	1.8	84
24	Protein Kinase A(PKA)-Restrictcive and PKA-Permissive Phases of Oocyte Maturation. Cell Cycle, 2006, 5, 213-217.	1.3	18
25	Oocyte Isolation and Enucleation. Methods in Molecular Biology, 2006, 322, 31-41.	0.4	30
26	Monitoring Protein Kinase A Activities Using Expressed Substrate in Live Cells. Methods in Molecular Biology, 2006, 322, 425-433.	0.4	2
27	Co-operation of GsÎ \pm and GÎ 2 Î 3 in maintaining G2arrest inxenopusoocytes. Journal of Cellular Physiology, 2005, 202, 32-40.	2.0	14
28	A serotonin receptor antagonist induces oocyte maturation in both frogs and mice: Evidence that the same G protein-coupled receptor is responsible for maintaining meiosis arrest in both species. Journal of Cellular Physiology, 2005, 202, 777-786.	2.0	32
29	Transcription-dependent and transcription-independent functions of the classical progesterone receptor in Xenopus ovaries. Developmental Biology, 2005, 283, 180-190.	0.9	26
30	Progesterone inhibits protein kinase A (PKA) in Xenopus oocytes: demonstration of endogenous PKA activities using an expressed substrate. Journal of Cell Science, 2004, 117, 5107-5116.	1.2	35
31	Biphasic Activation of Aurora-A Kinase during the Meiosis I- Meiosis II Transition in Xenopus Oocytes. Molecular and Cellular Biology, 2003, 23, 1703-1716.	1.1	46
32	A G Protein-coupled Receptor Kinase Induces XenopusOocyte Maturation. Journal of Biological Chemistry, 2003, 278, 15809-15814.	1.6	19
33	The Classical Progesterone Receptor Mediates Xenopus Oocyte Maturation Through a Non-Genomic Mechanism., 2003,, 93-101.		0
34	GIPC Participates in G Protein Signaling Downstream of Insulin-like Growth Factor 1 Receptor. Journal of Biological Chemistry, 2002, 277, 6719-6725.	1.6	58
35	Inhibition of MEK or cdc2 Kinase Parthenogenetically Activates Mouse Eggs and Yields the Same Phenotypes as Mosâ´'/â´' Parthenogenotes. Developmental Biology, 2002, 247, 210-223.	0.9	95
36	Regulation of Xenopus oocyte meiosis arrest by G protein $\hat{l}^2\hat{l}^3$ subunits. Current Biology, 2001, 11, 405-416.	1.8	73

X JOHNE LIU

#	Article	IF	CITATIONS
37	Xenopus laevis TRK-fused gene (TFG) is an SH3 domain binding protein highly expressed in the cement gland. Molecular Reproduction and Development, 2000, 56, 336-344.	1.0	12
38	A Rho-associated Protein Kinase, ROKα, Binds Insulin Receptor Substrate-1 and Modulates Insulin Signaling. Journal of Biological Chemistry, 1998, 273, 4740-4746.	1.6	64
39	A Novel Insulin Receptor Substrate Protein, xIRS-u, Potentiates Insulin Signaling: Functional Importance of Its Pleckstrin Homology Domain. Molecular Endocrinology, 1998, 12, 1086-1098.	3.7	7
40	A localized calcium transient and polar body abscission. Cell Cycle, 0, , 1-16.	1.3	1