
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/87975/publications.pdf Version: 2024-02-01

ΔΝΝΑ Μ ΡΟΜΑΝΑ-

#	Article	IF	CITATIONS
1	The ecology and biogeochemistry of stream biofilms. Nature Reviews Microbiology, 2016, 14, 251-263.	28.6	746
2	INTERACTIONS OF BACTERIA AND FUNGI ON DECOMPOSING LITTER: DIFFERENTIAL EXTRACELLULAR ENZYME ACTIVITIES. Ecology, 2006, 87, 2559-2569.	3.2	376
3	Monitoring the effect of chemicals on biological communities. The biofilm as an interface. Analytical and Bioanalytical Chemistry, 2007, 387, 1425-1434.	3.7	341
4	Bridging levels of pharmaceuticals in river water with biological community structure in the llobregat river basin (northeast spain). Environmental Toxicology and Chemistry, 2009, 28, 2706-2714.	4.3	166
5	Triclosan persistence through wastewater treatment plants and its potential toxic effects on river biofilms. Aquatic Toxicology, 2010, 100, 346-353.	4.0	149
6	Biofilm Structure and Function and Possible Implications for Riverine DOC Dynamics. Microbial Ecology, 2004, 47, 316-28.	2.8	142
7	Primary and complex stressors in polluted mediterranean rivers: Pesticide effects on biological communities. Journal of Hydrology, 2010, 383, 52-61.	5.4	138
8	Effects of riparian vegetation removal on nutrient retention in a Mediterranean stream. Journal of the North American Benthological Society, 2000, 19, 609-620.	3.1	136
9	The effect of biological factors on the efficiency of river biofilms in improving water quality. Hydrobiologia, 2002, 469, 149-156.	2.0	133
10	Effects of low concentrations of the phenylurea herbicide diuron on biofilm algae and bacteria. Chemosphere, 2009, 76, 1392-1401.	8.2	131
11	Relevance of Polymeric Matrix Enzymes During Biofilm Formation. Microbial Ecology, 2008, 56, 427-436.	2.8	120
12	Effects of pesticides and pharmaceuticals on biofilms in a highly impacted river. Environmental Pollution, 2013, 178, 220-228.	7.5	107
13	Response of biofilm bacterial communities to antibiotic pollutants in a Mediterranean river. Chemosphere, 2013, 92, 1126-1135.	8.2	102
14	Multifunctionality and Diversity in Bacterial Biofilms. PLoS ONE, 2011, 6, e23225.	2.5	99
15	Biofilm formation at warming temperature: acceleration of microbial colonization and microbial interactive effects. Biofouling, 2011, 27, 59-71.	2.2	98
16	Influence of Algal Biomass on Extracellular Enzyme Activity in River Biofilms. Microbial Ecology, 2000, 40, 16-24.	2.8	97
17	Longitudinal development of chlorophyll and phytoplankton assemblages in a regulated large river (the Ebro River). Science of the Total Environment, 2008, 404, 196-206.	8.0	96
18	Effect of primary producers on the heterotrophic metabolism of a stream biofilm. Freshwater Biology, 1999, 41, 729-736.	2.4	95

#	Article	IF	CITATIONS
19	STRUCTURE AND ACTIVITY OF ROCK AND SAND BIOFILMS IN A MEDITERRANEAN STREAM. Ecology, 2001, 82, 3232-3245.	3.2	93
20	Assessment of multi-chemical pollution in aquatic ecosystems using toxic units: Compound prioritization, mixture characterization and relationships with biological descriptors. Science of the Total Environment, 2014, 468-469, 715-723.	8.0	92
21	STRUCTURE AND FUNCTION OF BENTHIC ALGAL COMMUNITIES IN AN EXTREMELY ACID RIVER1. Journal of Phycology, 2003, 39, 481-489.	2.3	88
22	The influence of substratum type and nutrient supply on biofilm organic matter utilization in streams. Limnology and Oceanography, 2004, 49, 1713-1721.	3.1	85
23	Resistance and recovery of river biofilms receiving short pulses of Triclosan and Diuron. Science of the Total Environment, 2011, 409, 3129-3137.	8.0	81
24	Microbial Availability and Size Fractionation of Dissolved Organic Carbon After Drought in an Intermittent Stream: Biogeochemical Link Across the Stream–Riparian Interface. Microbial Ecology, 2006, 52, 501-512.	2.8	75
25	Microbial biofilm structure and organic matter use in mediterranean streams. Hydrobiologia, 2013, 719, 43-58.	2.0	74
26	Organic matter availability during pre- and post-drought periods in a Mediterranean stream. Hydrobiologia, 2010, 657, 217-232.	2.0	72
27	Availability of glucose and light modulates the structure and function of a microbial biofilm. FEMS Microbiology Ecology, 2009, 69, 27-42.	2.7	65
28	Fluvial biofilms: A pertinent tool to assess β-blockers toxicity. Aquatic Toxicology, 2010, 96, 225-233.	4.0	64
29	Ecological implications of mass growth of benthic cyanobacteria in rivers. Aquatic Microbial Ecology, 2003, 32, 175-184.	1.8	62
30	Organic matter availability structures microbial biomass and activity in a Mediterranean stream. Freshwater Biology, 2009, 54, 2025-2036.	2.4	59
31	Sediment microbial communities rely on different dissolved organic matter sources along a Mediterranean river continuum. Limnology and Oceanography, 2016, 61, 1389-1405.	3.1	58
32	Labile and Recalcitrant Organic Matter Utilization by River Biofilm Under Increasing Water Temperature. Microbial Ecology, 2012, 64, 593-604.	2.8	57
33	A conceptual framework for understanding the biogeochemistry of dry riverbeds through the lens of soil science. Earth-Science Reviews, 2019, 188, 441-453.	9.1	54
34	ALGAL RESPONSE TO NUTRIENT ENRICHMENT IN FORESTED OLIGOTROPHIC STREAM ¹ . Journal of Phycology, 2008, 44, 564-572.	2.3	51
35	Differences in the sensitivity of fungi and bacteria to season and invertebrates affect leaf litter decomposition in a Mediterranean stream. FEMS Microbiology Ecology, 2016, 92, fiw121.	2.7	51

3

#	Article	IF	CITATIONS
37	Effects of Warming on Stream Biofilm Organic Matter Use Capabilities. Microbial Ecology, 2014, 68, 132-145.	2.8	47
38	Quality and reactivity of dissolved organic matter in a Mediterranean river across hydrological and spatial gradients. Science of the Total Environment, 2017, 599-600, 1802-1812.	8.0	47
39	Effect of nutrients on the sporulation and diversity of aquatic hyphomycetes on submerged substrata in a Mediterranean stream. Aquatic Botany, 2008, 88, 32-38.	1.6	46
40	Epilithic ectoenzyme activity in a nutrient-rich Mediterranean river. Aquatic Sciences, 1999, 61, 122.	1.5	44
41	Metabolism recovery of a stromatolitic biofilm after drought in a Mediterranean stream fig: 3. Fundamental and Applied Limnology, 1997, 140, 261-271.	0.7	44
42	Long-term moderate nutrient inputs enhance autotrophy in a forested Mediterranean stream. Freshwater Biology, 2011, 56, 1266-1280.	2.4	43
43	The use of wooden sticks to assess stream ecosystem functioning: Comparison with leaf breakdown rates. Science of the Total Environment, 2012, 440, 115-122.	8.0	43
44	Heterotrophic metabolism in a forest stream sediment: surface versus subsurface zones. Aquatic Microbial Ecology, 1998, 16, 143-151.	1.8	43
45	Metabolic changes associated with biofilm formation in an undisturbed Mediterranean stream. Hydrobiologia, 1996, 335, 107-113.	2.0	42
46	The relevance of the community approach linking chemical and biological analyses in pollution assessment. TrAC - Trends in Analytical Chemistry, 2009, 28, 619-626.	11.4	40
47	Effects of the Dry–Wet Hydrological Shift on Dissolved Organic Carbon Dynamics and Fate Across Stream–Riparian Interface in a Mediterranean Catchment. Ecosystems, 2007, 10, 239-251.	3.4	39
48	Is chemical contamination linked to the diversity of biological communities in rivers?. TrAC - Trends in Analytical Chemistry, 2009, 28, 592-602.	11.4	38
49	Shifts in microbial community structure and function in light―and darkâ€grown biofilms driven by warming. Environmental Microbiology, 2014, 16, 2550-2567.	3.8	38
50	Does Grazing Pressure Modify Diuron Toxicity in a Biofilm Community?. Archives of Environmental Contamination and Toxicology, 2010, 58, 955-962.	4.1	37
51	The effects of sediment depth and oxygen concentration on the use of organic matter: An experimental study using an infiltration sediment tank. Science of the Total Environment, 2016, 540, 20-31.	8.0	37
52	Effects of nutrient inputs in a forested Mediterranean stream under moderate light availability. Archiv Für Hydrobiologie, 2005, 163, 479-496.	1.1	36
53	Microbial decomposition is highly sensitive to leaf litter emersion in a permanent temperate stream. Science of the Total Environment, 2018, 621, 486-496.	8.0	36
54	Connecting bacterial colonization to physical and biochemical changes in a sand box infiltration experiment. Journal of Hydrology, 2014, 517, 317-327.	5.4	35

#	Article	IF	CITATIONS
55	Warmer nightâ€ŧime temperature promotes microbial heterotrophic activity and modifies stream sediment community. Global Change Biology, 2017, 23, 3825-3837.	9.5	35
56	Differential effects of nutrients and light on the primary production of stream algae and mosses. Fundamental and Applied Limnology, 2007, 170, 1-10.	0.7	34
57	Organic matter characteristics in a Mediterranean stream through amino acid composition: changes driven by intermittency. Aquatic Sciences, 2011, 73, 523-535.	1.5	34
58	Hydrological conditions control in situ DOM retention and release along a Mediterranean river. Water Research, 2016, 99, 33-45.	11.3	34
59	Drought episode modulates the response of river biofilms to triclosan. Aquatic Toxicology, 2013, 127, 36-45.	4.0	33
60	Interaction between Physical Heterogeneity and Microbial Processes in Subsurface Sediments: A Laboratory-Scale Column Experiment. Environmental Science & Technology, 2017, 51, 6110-6119.	10.0	33
61	Deconvolution model to resolve cytometric microbial community patterns in flowing waters. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2018, 93, 194-200.	1.5	33
62	Different diversity-functioning relationship in lake and stream bacterial communities. FEMS Microbiology Ecology, 2013, 85, 95-103.	2.7	30
63	Nutrients and light effects on stream biofilms: a combined assessment with CLSM, structural and functional parameters. Hydrobiologia, 2012, 695, 281-291.	2.0	29
64	The Biota of Intermittent Rivers and Ephemeral Streams: Prokaryotes, Fungi, and Protozoans. , 2017, , 161-188.		28
65	A bilayer coarse-fine infiltration system minimizes bioclogging: The relevance of depth-dynamics. Science of the Total Environment, 2019, 669, 559-569.	8.0	28
66	Relating nutrient molar ratios of microbial attached communities to organic matter utilization in a forested stream. Fundamental and Applied Limnology, 2009, 173, 255-264.	0.7	27
67	Fungal and Bacterial Colonization of Submerged Leaf Litter in a Mediterranean Stream. International Review of Hydrobiology, 2011, 96, 221-234.	0.9	27
68	Patterns of biofilm formation in two streams from different bioclimatic regions: analysis of microbial community structure and metabolism. Hydrobiologia, 2012, 695, 83-96.	2.0	27
69	Consequences of Warming and Resource Quality on the Stoichiometry and Nutrient Cycling of a Stream Shredder. PLoS ONE, 2015, 10, e0118520.	2.5	27
70	Influence of grazing on triclosan toxicity to stream periphyton. Freshwater Biology, 2016, 61, 2002-2012.	2.4	25
71	Key role of streambed moisture and flash storms for microbial resistance and resilience to longâ€ŧerm drought. Freshwater Biology, 2019, 64, 306-322.	2.4	25
72	Global pressures, specific responses: effects of nutrient enrichment in streams from different biomes. Environmental Research Letters, 2013, 8, 014002.	5.2	24

#	Article	IF	CITATIONS
73	Responses of microbial activity in hyporheic pore water to biogeochemical changes in a drying headwater stream. Freshwater Biology, 2019, 64, 735-749.	2.4	24
74	Stromatolitic communities in Mediterranean streams: adaptations to a changing environment. Biodiversity and Conservation, 2000, 9, 379-392.	2.6	23
75	Contribution of microbial and invertebrate communities to leaf litter colonization in a Mediterranean stream. Journal of the North American Benthological Society, 2009, 28, 34-43.	3.1	23
76	Factors controlling seasonality in leaf-litter breakdown in a Mediterranean stream. Freshwater Science, 2015, 34, 1245-1258.	1.8	23
77	Arsenic toxicity effects on microbial communities and nutrient cycling in indoor experimental channels mimicking a fluvial system. Aquatic Toxicology, 2015, 166, 72-82.	4.0	23
78	Phosphorus use by planktonic communities in a large regulated Mediterranean river. Science of the Total Environment, 2012, 426, 180-187.	8.0	22
79	Organic matter decomposition by fungi in a Mediterranean forested stream : contribution of streambed substrata. Annales De Limnologie, 2004, 40, 269-277.	0.6	18
80	A compositional analysis approach to phytoplankton composition inÂcoastal Mediterranean wetlands: Influence of salinity and nutrient availability. Estuarine, Coastal and Shelf Science, 2014, 136, 72-81.	2.1	18
81	Responses of microbial decomposers to drought in streams may depend on the environmental context. Environmental Microbiology Reports, 2017, 9, 756-765.	2.4	18
82	Responses of microbially driven leaf litter decomposition to stream nutrients depend on litter quality. Hydrobiologia, 2018, 806, 333-346.	2.0	18
83	Legacy of Summer Drought on Autumnal Leaf Litter Processing in a Temporary Mediterranean Stream. Ecosystems, 2020, 23, 989-1003.	3.4	18
84	Impact of drying/rewetting cycles on the bioavailability of dissolved organic matter molecular-weight fractions in a Mediterranean stream. Freshwater Science, 2015, 34, 263-275.	1.8	17
85	Biofilm phosphorus uptake capacity as a tool for the assessment of pollutant effects in river ecosystems. Ecotoxicology, 2017, 26, 271-282.	2.4	17
86	Microbial Organic Matter Utilization in High-Arctic Streams: Key Enzymatic Controls. Microbial Ecology, 2019, 78, 539-554.	2.8	17
87	Variability of heterotrophic activity in Mediterranean stream biofilms: A multivariate analysis of physical-chemical and biological factors. Aquatic Sciences, 2000, 62, 205-215.	1.5	16
88	Delayed response of microbial epipelic biofilm to nutrient addition in a Pampean stream. Aquatic Microbial Ecology, 2013, 69, 145-155.	1.8	16
89	Extracellular enzymatic activities in epilithic biofilms of the Breitenbach: microhabitat differences. Fundamental and Applied Limnology, 2002, 155, 541-555.	0.7	15

#	Article	IF	CITATIONS
91	A stromatolitic cyanobacterial crust in a Mediterranean stream optimizes organic matter use. Aquatic Microbial Ecology, 1998, 16, 131-141.	1.8	14
92	The Use of Attached Microbial Communities to Assess Ecological Risks of Pollutants in River Ecosystems: The Role of Heterotrophs. Handbook of Environmental Chemistry, 2012, , 55-83.	0.4	13
93	A mechanistic model (<scp>BCCâ€PSSICO</scp>) to predict changes in the hydraulic properties for bioâ€amended variably saturated soils. Water Resources Research, 2017, 53, 93-109.	4.2	13
94	The synergistic effect of enzymatic detergents on biofilm cleaning from different surfaces. Biofouling, 2019, 35, 883-899.	2.2	13
95	Bilayer Infiltration System Combines Benefits from Both Coarse and Fine Sands Promoting Nutrient Accumulation in Sediments and Increasing Removal Rates. Environmental Science & Technology, 2018, 52, 5734-5743.	10.0	10
96	Shifts in carbon substrate utilization in sediment microbial communities along the Llobregat River. Fundamental and Applied Limnology, 2014, 185, 247-261.	0.7	10
97	Nutrient and enzymatic adaptations of stream biofilms to changes in nitrogen and phosphorus supply. Aquatic Microbial Ecology, 2015, 75, 91-102.	1.8	10
98	Litter decomposition of three halophytes in a Mediterranean salt marsh: Relevance of litter quality, microbial activity and microhabitat. Science of the Total Environment, 2022, 838, 155743.	8.0	10
99	Establishing potential links between the presence of alkylphenolic compounds and the benthic community in a European river basin. Environmental Science and Pollution Research, 2012, 19, 934-945.	5.3	8
100	Fluvial biofilms from upper and lower river reaches respond differently to wastewater treatment plant inputs. Hydrobiologia, 2016, 765, 169-183.	2.0	8
101	Linking biofilm spatial structure to real-time microscopic oxygen decay imaging. Biofouling, 2018, 34, 200-211.	2.2	7
102	Different microbial functioning in natural versus man-made Mediterranean coastal lagoons in relation to season. Estuarine, Coastal and Shelf Science, 2021, 259, 107434.	2.1	7
103	Interplay between sediment properties and stream flow conditions influences surface sediment organic matter and microbial biomass in a Mediterranean river. Hydrobiologia, 2019, 828, 199-212.	2.0	6
104	Editorial: Extracellular Enzymes in Aquatic Environments: Exploring the Link Between Genomic Potential and Biogeochemical Consequences. Frontiers in Microbiology, 2019, 10, 1463.	3.5	5
105	River biofilms adapted to anthropogenic disturbances are more resistant to WWTP inputs. FEMS Microbiology Ecology, 2020, 96, .	2.7	5
106	Assessing the ecological integrity after nutrient inputs in streams: The relevance of the observation scale. Aquatic Ecosystem Health and Management, 2005, 8, 397-403.	0.6	4
107	Changes of the phenol-degrading bacterial community during the decomposition of submersedPlatanus acerifolialeaves. FEMS Microbiology Letters, 2013, 338, 184-191.	1.8	4

108 Microbes in Aquatic Biofilms Under the Effect of Changing Climate. , 2016, , 83-96.

4

#	Article	IF	CITATIONS
109	Biochemical quality of basal resources in a forested stream: effects of nutrient enrichment. Aquatic Sciences, 2017, 79, 99-112.	1.5	3
110	Aquatic and Riparian Biodiversity in the Ebro Watershed: Prospects and Threats. Handbook of Environmental Chemistry, 2010, , 121-138.	0.4	2
111	Temperature-induced changes in biofilm organic matter utilization in arctic streams (Disko Island,) Tj ETQq1 1 0.7	'84314 rg 1.2	BT ₂ /Overlock
112	Organic matter availability during pre- and post-drought periods in a Mediterranean stream. , 2010, , 217-232.		1
113	Introduction to Microbial Fouling. , 0, , 121-122.		0