Yoshihiro Matano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8797264/publications.pdf

Version: 2024-02-01

136950 182427 2,840 81 32 51 h-index citations g-index papers 85 85 85 1490 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Design and synthesis of phosphole-based π systems for novel organic materials. Organic and Biomolecular Chemistry, 2009, 7, 1258.	2.8	279
2	Phosphole-Containing Calixpyrroles, Calixphyrins, and Porphyrins: Synthesis and Coordination Chemistry. Accounts of Chemical Research, 2009, 42, 1193-1204.	15.6	118
3	Fusion of Phosphole and $1,1\hat{a}\in^2\hat{a}\in B$ iacenaphthene: Phosphorus (V) $\hat{a}\in C$ ontaining Extended $\hat{l}\in \hat{a}\in S$ ystems with High Electron Affinity and Electron Mobility. Angewandte Chemie - International Edition, 2011, 50, 8016-8020.	13.8	115
4	Synthesis of Aza-, Oxa-, and Thiaporphyrins and Related Compounds. Chemical Reviews, 2017, 117, 3138-3191.	47.7	105
5	Syntheses, Structures, and Coordination Chemistry of Phosphole-Containing Hybrid Calixphyrins:Â Promising Macrocyclic P,N2,X-Mixed Donor Ligands for Designing Reactive Transition-Metal Complexes. Journal of the American Chemical Society, 2008, 130, 990-1002.	13.7	85
6	Regioselective \hat{l}^2 -Metalation of <i>meso</i> -Phosphanylporphyrins. Structure and Optical Properties of Porphyrin Dimers Linked by Peripherally Fused Phosphametallacycles. Journal of the American Chemical Society, 2008, 130, 4588-4589.	13.7	76
7	Comparative Study on the Structural, Optical, and Electrochemical Properties of Bithiopheneâ€Fused Benzo[⟨i⟩c⟨/i⟩]phospholes. Chemistry - A European Journal, 2008, 14, 8102-8115.	3.3	75
8	Phosphorus-Containing Hybrid Calixphyrins:Â Promising Mixed-Donor Ligands for Visible and Efficient Palladium Catalysts. Journal of the American Chemical Society, 2006, 128, 11760-11761.	13.7	71
9	Synthesis, Structures, and Properties ofmeso-Phosphorylporphyrins: Self-Organization through P–Oxo–Zinc Coordination. Chemistry - A European Journal, 2007, 13, 891-901.	3.3	71
10	Redoxâ€Switchable 20Ï€â€, 19Ï€â€, and 18Ï€â€Electron 5,10,15,20â€Tetraarylâ€5,15â€diazaporphyrinoid Nickel(Complexes. Angewandte Chemie - International Edition, 2016, 55, 2235-2238.	(ll) 13.8	70
11	Redox-Coupled Complexation of 23-Phospha-21-thiaporphyrin with Group 10 Metals: A Convenient Access to Stable Core-Modified Isophlorinâ`Metal Complexes. Journal of the American Chemical Society, 2008, 130, 16446-16447.	13.7	63
12	Free Base and Metal Complexes of 5,15-Diaza-10,20-dimesitylporphyrins: Synthesis, Structures, Optical and Electrochemical Properties, and Aromaticities. Inorganic Chemistry, 2012, 51, 12879-12890.	4.0	63
13	Nickel(II) and Copper(II) Complexes of βâ€Unsubstituted 5,15â€Diazaporphyrins and Pyridazineâ€Fused Diazacorrinoids: Metal–Template Syntheses and Peripheral Functionalizations. Chemistry - A European Journal, 2012, 18, 6208-6216.	3.3	63
14	Acenaphtho[1, 2â€ <i>c</i>)]phosphole <i>P</i> â€Oxide: A Phosphole–Naphthalene Ï€â€Conjugated Syster High Electron Mobility. Chemistry - A European Journal, 2009, 15, 10000-10004.	n with 3.3	62
15	Synthesis of a Phosphorus-Containing Hybrid Porphyrin. Organic Letters, 2006, 8, 5713-5716.	4.6	60
16	Photophysics and photoelectrochemical properties of nanohybrids consisting of fullerene-encapsulated single-walled carbon nanotubes and poly(3-hexylthiophene). Energy and Environmental Science, 2011, 4, 741-750.	30.8	60
17	î±,α′â€Diarylacenaphtho[1,2â€ <i>c</i>]phosphole <i>P</i> â€Oxides: Divergent Synthesis and Application to Cathode Buffer Layers in Organic Photovoltaics. Chemistry - an Asian Journal, 2012, 7, 2305-2312.	3.3	53
18	Synthesis and Structure–Property Relationships of 2,2′â€Bis(benzo[<i>b</i>)]phosphole) and 2,2′â€Benzo[<i>b</i>)]heterole Hybrid Ï€ Systems. Chemistry - A European Journal, 2012, 18, 15972-15983.	3.3	52

#	Article	IF	Citations
19	Monophosphaporphyrins:  Oxidative π-Extension at the Peripherally Fused Carbocycle of the Phosphaporphyrin Ring. Organic Letters, 2008, 10, 553-556.	4.6	50
20	Effects of Carbon–Metal–Carbon Linkages on the Optical, Photophysical, and Electrochemical Properties of Phosphametallacycle-Linked Coplanar Porphyrin Dimers. Journal of the American Chemical Society, 2012, 134, 1825-1839.	13.7	50
21	A Convenient Method for the Synthesis of αâ€Ethynylphospholes and Modulation of Their Ï€â€Conjugated Systems. Angewandte Chemie - International Edition, 2009, 48, 4002-4005.	13.8	49
22	Synthesis of 2-Aryl-5-styrylphospholes:Â Promising Candidates for the Phosphole-Based NLO Chromophores. Journal of Organic Chemistry, 2007, 72, 6200-6205.	3.2	48
23	A Convenient Method for the Synthesis of 2,5-Difunctionalized Phospholes Bearing Ester Groups. Journal of Organic Chemistry, 2006, 71, 5792-5795.	3.2	47
24	Comparison of 2-Arylnaphtho $[2,3-\langle i\rangle b\langle i\rangle]$ phospholes and 2-Arylbenzo $[\langle i\rangle b\langle i\rangle]$ phospholes: Effects of 2-Aryl Groups and Fused Arene Moieties on Their Optical and Photophysical Properties. Journal of Organic Chemistry, 2015, 80, 5944-5950.	3.2	46
25	Synthesis and Reactions of Phosphaporphyrins: Reconstruction of π-Skeleton Triggered by Oxygenation of a Core Phosphorus Atom. Journal of Organic Chemistry, 2010, 75, 375-389.	3.2	45
26	Synthesis and Charge-Carrier Transport Properties of Poly(phosphole <i>P</i> alkanesulfonylimide)s. Organic Letters, 2013, 15, 932-935.	4.6	44
27	Oligothiophene Bearing 1-Hydroxy-1-oxodithieno[2,3- <i>b</i> :3′,2′- <i>d</i>) phosphole as a Novel Anchoring Group for Dye-sensitized Solar Cells. Chemistry Letters, 2010, 39, 448-450.	1.3	41
28	Phosphole―and Benzodithiopheneâ€Based Copolymers: Synthesis and Application in Organic Photovoltaics. European Journal of Inorganic Chemistry, 2014, 2014, 1620-1624.	2.0	40
29	Synthesis and Structure-Property Relationships of Phosphole-Based π Systems and Their Applications in Organic Solar Cells. Chemical Record, 2015, 15, 636-650.	5.8	38
30	Syntheses, Properties, and Catalytic Activities of Metal(II) Complexes and Free Bases of Redoxâ€6witchable 20Ï€, 19Ï€, and 18Ï€ 5,10,15,20â€7etraarylâ€5,15â€diazaporphyrinoids. Chemistry - A Europ Journal, 2017, 23, 16364-16373.	ea n 3	38
31	Phosphole-Triazole Hybrids: A Facile Synthesis and Complexation with Pd(II) and Pt(II) Salts. Organic Letters, 2009, 11, 3338-3341.	4.6	35
32	Synthesis, structures, and aromaticity of phosphole-containing porphyrins and their metal complexes. Pure and Applied Chemistry, 2010, 82, 583-593.	1.9	35
33	Bithiopheneâ€Fused Benzo[<i>c</i>]phospholes: Novel P,Sâ€Containing Hybrid Ï€â€Conjugated Systems with Small HOMO–LUMO Energy Gaps. European Journal of Organic Chemistry, 2008, 2008, 255-259.	2.4	33
34	Synthesis of 2-Alkenyl- and 2-Alkynyl-benzo[<i>b</i>]phospholes by Using Palladium-Catalyzed Cross-Coupling Reactions. Organic Letters, 2013, 15, 4458-4461.	4.6	31
35	Triaryl(1-pyrenyl)bismuthonium Salts: Efficient Photoinitiators for Cationic Polymerization of Oxiranes and a Vinyl Ether. Organic Letters, 2008, 10, 2167-2170.	4.6	28
36	Redoxâ€Switchable 20Ï€â€, 19Ï€â€, and 18Ï€â€Electron 5,10,15,20â€Tetraarylâ€5,15â€diazaporphyrinoid Nicke Complexes. Angewandte Chemie, 2016, 128, 2275-2278.	l(I <u>)</u> 2.0	28

3

#	Article	IF	Citations
37	Ring-Strain Effects in Base-Induced Sommelet-Hauser Rearrangement: Application to Successive Stereocontrolled Transformations. European Journal of Organic Chemistry, 2016, 2016, 3631-3641.	2.4	28
38	A New, Efficient Method for Direct \hat{l} ±-Alkenylation of \hat{l}^2 -Dicarbonyl Compounds and Phenols Using Alkenyltriarylbismuthonium Salts. Journal of Organic Chemistry, 2004, 69, 5505-5508.	3.2	27
39	Covalently Linked 5,15â€Diazaporphyrin Dimers: Promising Scaffolds for a Highly Conjugated Azaporphyrin Ï€ System. Chemistry - A European Journal, 2014, 20, 3342-3349.	3.3	27
40	Synthesis of Dibenzophosphole Oxides from Dibenzothiophene Dioxides and Phenylphosphine by Two Successive S _N Ar Reactions. Asian Journal of Organic Chemistry, 2017, 6, 257-261.	2.7	27
41	Synthesis and Aggregation Behavior of <i>meso</i> ŝeSulfinylporphyrins: Evaluation of Sâ€Chirality Effects on the Selfâ€Organization to S–Oxoâ€Tethered Cofacial Porphyrin Dimers. Chemistry - an Asian Journal, 2007, 2, 1417-1429.	3.3	24
42	Synthesis of Thiophene-Containing Hybrid Calixphyrins of the 5,10-Porphodimethene Type. Journal of Organic Chemistry, 2008, 73, 5139-5142.	3.2	22
43	Divergent Synthesis of 2,5-Diarylphospholes Based on Cross-coupling Reactions: Substituent Effects on the Optical and Redox Properties of Benzene–Phosphole–Benzene π-Systems. Chemistry Letters, 2011, 40, 919-921.	1.3	22
44	Remarkable Substituent Effects on the Oxidizing Ability of Triarylbismuth Dichlorides in Alcohol Oxidation. Journal of Organic Chemistry, 2004, 69, 8676-8680.	3.2	21
45	N,S,Pâ€Hybrid Donor–π–Acceptor Organic Dyes for Dye‧ensitized Solar Cell: Synthesis, Optical Properties, and Photovoltaic Performances. Heteroatom Chemistry, 2014, 25, 533-547.	0.7	21
46	Redox switchable 19π and 18π 5,10,20-triaryl-5,15-diazaporphyrinoid–nickel(II) complexes. Journal of Porphyrins and Phthalocyanines, 2018, 22, 542-551.	0.8	21
47	Synthesis and photovoltaic properties of thiophene–imide-fused thiophene alternating copolymers with different alkyl side chains. Journal of Materials Chemistry, 2011, 21, 12454.	6.7	19
48	Optical, Electrochemical, and Magnetic Properties of Pyrrole―and Thiopheneâ€Bridged 5,15â€Diazaporphyrin Dimers. Chemistry - A European Journal, 2015, 21, 2003-2010.	3.3	18
49	Effects of counter anions, P-substituents, and solvents on optical and photophysical properties of 2-phenylbenzo[b]phospholium salts. Dalton Transactions, 2017, 46, 9517-9527.	3.3	18
50	Pentavalent Organobismuth Reagents in Organic Synthesis: Alkylation, Alcohol Oxidation and Cationic Photopolymerization. Topics in Current Chemistry, 2011, 311, 19-44.	4.0	17
51	Slow Charge Recombination and Enhanced Photoelectrochemical Properties of Diazaporphyrin-Fullerene Linked Dyad. Journal of Physical Chemistry C, 2014, 118, 1808-1820.	3.1	17
52	Synthesis of Redoxâ€switchable 5,15â€Dialkylâ€10,20â€diarylâ€5,15â€diazaporphyrins and Diversification of the <i>N</i> â€Alkyl Groups. Asian Journal of Organic Chemistry, 2019, 8, 352-355.	eir _. 2.7	17
53	Effects of boryl, phosphino, and phosphonio substituents on optical, electrochemical, and photophysical properties of 2,5-dithienylphospholes and 2-phenyl-5-thienylphospholes. Dalton Transactions, 2016, 45, 2190-2200.	3.3	15
54	Nitrogenâ∈Bridged Metallodiazaporphyrin Dimers: Synergistic Effects of Nitrogen Bridges and <i>meso</i> å∈Nitrogen Atoms on Structure and Properties. Chemistry - an Asian Journal, 2017, 12, 816-821.	3.3	15

#	Article	IF	CITATIONS
55	Direct and Regioselective Amination of βâ€Unsubstituted 5,15â€Diazaporphyrins with Amines: A Convenient Route to Nearâ€Infraredâ€Responsive Diazaporphyrin Sensitizers. Angewandte Chemie - International Edition, 2018, 57, 3797-3800.	13.8	15
56	Synthesis and Photophysical Properties of Two Diazaporphyrin–Porphyrin Hetero Dimers in Polar and Nonpolar Solutions. Journal of Physical Chemistry B, 2015, 119, 7328-7337.	2.6	13
57	Phosphole–Thiophene Hybrid: A Dual Role of Dithieno[3,4- <i>b</i> :3′,4′- <i>d</i>]phosphole as Electron Acceptor and Electron Donor. Journal of Organic Chemistry, 2018, 83, 3397-3402.	3.2	12
58	Doubly Strapped Redox-Switchable 5,10,15,20-Tetraaryl-5,15-diazaporphyrinoids: Promising Platforms for the Evaluation of Paratropic and Diatropic Ring-Current Effects. Journal of Organic Chemistry, 2021, 86, 2283-2296.	3.2	12
59	Synthesis and Photovoltaic Properties of Phenylethynyl-substituted Diazaporphyrin. Chemistry Letters, 2013, 42, 725-726.	1.3	11
60	Comparison of electronic effects of \hat{l}^2 -aryl substituents on optical and electrochemical properties of 5,15-diazaporphyrin $\ddot{l}\in$ -systems. Journal of Porphyrins and Phthalocyanines, 2015, 19, 775-785.	0.8	11
61	Synthesis of 3,5-Disubstituted BODIPYs Bearing <i>N</i> -Containing Five-Membered Heteroaryl Groups via Nucleophilic C–N Bond Formation. Journal of Organic Chemistry, 2018, 83, 5274-5281.	3.2	11
62	$\langle i \rangle \hat{l}^2 \langle i \rangle$ -Functionalization of 5,15-Diazaporphyrins with Phosphorus, Oxygen, and Sulfur-Containing Substituents. Bulletin of the Chemical Society of Japan, 2018, 91, 1264-1266.	3.2	10
63	Zinc-Induced Fluorescence Enhancement of the 5,10-Porphodimethene-Type Thiophene-Containing Calixphyrins. Phosphorus, Sulfur and Silicon and the Related Elements, 2010, 185, 1098-1107.	1.6	9
64	Synthesis and properties of redoxâ€switchable zinc complexes of 10,15,20â€triarylâ€15â€azaâ€5â€oxaporphyrin Heteroatom Chemistry, 2018, 29, .	· 0.7	9
65	Antimony and Bismuth in Organic Synthesis. , 2005, , 753-811.		8
66	Local stoichiometry in amorphous supramolecular composites analyzed by solid-state C13 nuclear magnetic resonance. Applied Physics Letters, 2011, 98, 113301.	3.3	8
67	Unsymmetrically Substituted Donor–π–Acceptorâ€Type 5,15â€Diazaporphyrin Sensitizers: Synthesis, Optical and Photovoltaic Properties. ChemPlusChem, 2017, 82, 695-704.	2.8	8
68	Regioselective functionalization at the 7-position of 1,2,3-triphenylbenzo[b]phosphole oxide via $Pi \in O$ -directed lithiation. Dalton Transactions, 2018, 47, 7123-7127.	3.3	7
69	Effects of the Peripheral Substituents, Central Metal, and Solvent on the Photochemical and Photophysical Properties of 5,15â€Diazaporphyrins. ChemPlusChem, 2019, 84, 740-745.	2.8	7
70	Synthesis and optical, magnetic, and electrochemical properties of 5,10,15,20-tetraaryl-5,15-diazaporphyrin â€" tertiary amine conjugates. Journal of Porphyrins and Phthalocyanines, 2020, 24, 286-297.	0.8	5
71	Excited-State Intramolecular Proton Transfer Reaction and Ground-State Hole Dynamics of 4′-⟨i⟩N⟨ i⟩,⟨i>N⟨ i⟩-Dialkylamino-3-hydroxyflavone in Ionic Liquids Studied by Transient Absorption Spectroscopy. Journal of Physical Chemistry B, 2021, 125, 5373-5386.	2.6	5
72	Synthesis, Optical Properties, and Electrochemical Behavior of 5,10,15,20â€Tetraarylâ€5,15â€diazaporphyrinâ€Amine Hybrids. ChemPlusChem, 2021, 86, 1476-1486.	2.8	5

#	Article	IF	CITATIONS
73	Ï€-Conjugated Molecules Containing Tetrathiafulvalene and Benzo[⟨i⟩b⟨li⟩]phosphole Oxide: Synthesis, Structure, and Electrochemical and Optical Properties. Chemistry Letters, 2021, 50, 1581-1585.	1.3	4
74	Copper(II) Complexes of 10,20-Diaryl-5,15-diazaporphyrin: Alternative Synthesis, Excited State Dynamics, and Substituent Effect on the 102-Generation Efficiency. Bulletin of the Chemical Society of Japan, 2022, 95, 427-432.	3.2	4
75	Synthesis of hydrophilic copper(II) complexes of 5,10,15,20-tetraaryl-5,15-diazaporphyrins substituted with carboxy or (2,3-dihydroxypropyl)carbamoyl groups. Journal of Porphyrins and Phthalocyanines, 2021, 25, 1004-1014.	0.8	3
76	Synthesis, Electrochemical Behavior, and Catalytic Activity of Cobalt Complexes of 5,10,15,20-Tetraaryl-5,15-diazaporphyrinoids. Organic Letters, 2022, 24, 3839-3843.	4.6	3
77	9â€(Diphenylphosphoryl)â€10â€(phenylethynyl)anthracene Derivatives: Synthesis and Implications for the Substituent and Solvent Effects on the Lightâ€Emitting Properties. ChemPhotoChem, 2022, 6, .	3.0	3
78	Direct and Regioselective Amination of βâ€Unsubstituted 5,15â€Diazaporphyrins with Amines: A Convenient Route to Nearâ€Infraredâ€Responsive Diazaporphyrin Sensitizers. Angewandte Chemie, 2018, 130, 3859-3862.	2.0	2
79	Recent Advances in the Syntheses of Oxidized and Reduced Porphyrins. Handbook of Porphyrin Science, 2022, , 41-111.	0.8	1
80	Synthesis and Optical Properties of 1,2,5,10-Tetraphenylanthra[2,3- <i>b</i>]phosphole Derivatives. Journal of Organic Chemistry, 2022, 87, 10493-10500.	3.2	1
81	Inside Cover: Bisquinoxaline-Fused Porphyrins for Dye-Sensitized Solar Cells (ChemSusChem 6/2011). ChemSusChem, 2011, 4, 670-670.	6.8	0