Jeannine M Cavender-Bares

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8796785/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	For the sake of resilience and multifunctionality, let's diversify planted forests!. Conservation Letters, 2022, 15, e12829.	2.8	124
2	Remotely detected aboveground plant function predicts belowground processes in two prairie diversity experiments. Ecological Monographs, 2022, 92, e1488.	2.4	19
3	Conservation needs to integrate knowledge across scales. Nature Ecology and Evolution, 2022, 6, 118-119.	3.4	40
4	Representing plant diversity in land models: An evolutionary approach to make "Functional Types― more functional. Global Change Biology, 2022, 28, 2541-2554.	4.2	28
5	Integrating remote sensing with ecology and evolution to advance biodiversity conservation. Nature Ecology and Evolution, 2022, 6, 506-519.	3.4	84
6	The hidden value of trees: Quantifying the ecosystem services of tree lineages and their major threats across the contiguous US. , 2022, 1, e0000010.		14
7	Canopy spectral reflectance detects oak wilt at the landscape scale using phylogenetic discrimination. Remote Sensing of Environment, 2022, 273, 112961.	4.6	24
8	Novel insights on the linkage between enhanced photoprotection and oak decline. Tree Physiology, 2022, 42, 203-207.	1.4	2
9	Seasonal patterns of spectral diversity at leaf and canopy scales in the Cedar Creek prairie biodiversity experiment. Remote Sensing of Environment, 2022, 280, 113169.	4.6	6
10	Contrasting Impacts of Cultivated Exotics on the Functional Diversity of Domestic Gardens in Three Regions with Different Aridity. Ecosystems, 2021, 24, 875-890.	1.6	2
11	Deciduous and evergreen oaks show contrasting adaptive responses in leaf mass per area across environments. New Phytologist, 2021, 230, 521-534.	3.5	38
12	Remote spectral detection of biodiversity effects on forest biomass. Nature Ecology and Evolution, 2021, 5, 46-54.	3.4	33
13	Unraveling the drivers of plant taxonomic and phylogenetic \hat{l}^2 -diversity in a human-modified tropical dry forest. Biodiversity and Conservation, 2021, 30, 1049-1065.	1.2	11
14	Enhanced light interception and light use efficiency explain overyielding in young tree communities. Ecology Letters, 2021, 24, 996-1006.	3.0	24
15	Physiological responses to light explain competition and facilitation in a tree diversity experiment. Journal of Ecology, 2021, 109, 2000-2018.	1.9	23
16	Disease and fire interact to influence transitions between savanna–forest ecosystems over a multiâ€decadal experiment. Ecology Letters, 2021, 24, 1007-1017.	3.0	11
17	A framework for understanding how biodiversity patterns unfold across multiple spatial scales in urban ecosystems. Ecosphere, 2021, 12, e03650.	1.0	24
18	Predicting species distributions and community composition using satellite remote sensing predictors. Scientific Reports, 2021, 11, 16448.	1.6	16

#	Article	IF	CITATIONS
19	Coupling spectral and resource-use complementarity in experimental grassland and forest communities. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211290.	1.2	9
20	Genomic landscape of the global oak phylogeny. New Phytologist, 2020, 226, 1198-1212.	3.5	186
21	Urban plant diversity in Los Angeles, California: Species and functional type turnover in cultivated landscapes. Plants People Planet, 2020, 2, 144-156.	1.6	35
22	Drivers of habitat partitioning among three Quercus species along a hydrologic gradient. Tree Physiology, 2020, 40, 142-157.	1.4	2
23	Urban soil carbon and nitrogen converge at a continental scale. Ecological Monographs, 2020, 90, e01401.	2.4	32
24	Linking yard plant diversity to homeowners' landscaping priorities across the U.S. Landscape and Urban Planning, 2020, 196, 103730.	3.4	23
25	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	4.2	1,038
26	Toward an integrated view of the â€~elephant': unlocking the mysteries of water transport and xylem vulnerability in oaks. Tree Physiology, 2020, 40, 1-4.	1.4	8
27	Seasonal variation in native hydraulic conductivity between two deciduous oak species. Journal of Plant Ecology, 2020, 13, 78-86.	1.2	2
28	Light mediates the relationship between community diversity and trait plasticity in functionally and phylogenetically diverse tree mixtures. Journal of Ecology, 2020, 108, 1617-1634.	1.9	23
29	Set ambitious goals for biodiversity and sustainability. Science, 2020, 370, 411-413.	6.0	225
30	Climate and phylogenetic history structure morphological and architectural trait variation among fineâ€root orders. New Phytologist, 2020, 228, 1824-1834.	3.5	25
31	The results of biodiversity–ecosystem functioning experiments are realistic. Nature Ecology and Evolution, 2020, 4, 1485-1494.	3.4	93
32	Revisiting the Functional Basis of Sclerophylly Within the Leaf Economics Spectrum of Oaks: Different Roads to Rome. Current Forestry Reports, 2020, 6, 260-281.	3.4	26
33	Testing Darwin's naturalization conundrum based on taxonomic, phylogenetic, and functional dimensions of vascular plants. Ecological Monographs, 2020, 90, e01420.	2.4	19
34	Foliar functional traits from imaging spectroscopy across biomes in eastern North America. New Phytologist, 2020, 228, 494-511.	3.5	109
35	Open questions in understanding the adaptive significance of plant functional trait variation within a single lineage. New Phytologist, 2020, 227, 659-663.	3.5	8
36	Taxonomic, phylogenetic, and functional composition and homogenization of residential yard vegetation with contrasting management. Landscape and Urban Planning, 2020, 202, 103877.	3.4	19

#	Article	IF	CITATIONS
37	Leaf reflectance spectra capture the evolutionary history of seed plants. New Phytologist, 2020, 228, 485-493.	3.5	72
38	Functional diversity of leaf litter mixtures slows decomposition of labile but not recalcitrant carbon over two years. Ecological Monographs, 2020, 90, e01407.	2.4	55
39	Horticultural availability and homeowner preferences drive plant diversity and composition in urban yards. Ecological Applications, 2020, 30, e02082.	1.8	30
40	Spectral differentiation of oak wilt from foliar fungal disease and drought is correlated with physiological changes. Tree Physiology, 2020, 40, 377-390.	1.4	42
41	Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models. Remote Sensing of Environment, 2020, 239, 111626.	4.6	142
42	Multiâ€temporal assessment of grassland α―and βâ€diversity using hyperspectral imaging. Ecological Applications, 2020, 30, e02145.	1.8	33
43	Consequences of drought severity for tropical live oak (<i>Quercus oleoides</i>) in Mesoamerica. Ecological Applications, 2020, 30, e02135.	1.8	2
44	Consideration of Scale in Remote Sensing of Biodiversity. , 2020, , 425-447.		18
45	Applying Remote Sensing to Biodiversity Science. , 2020, , 13-42.		10
46	Linking Leaf Spectra to the Plant Tree of Life. , 2020, , 155-172.		11
47	Using Remote Sensing for Modeling and Monitoring Species Distributions. , 2020, , 199-223.		5
48	The Use of Remote Sensing to Enhance Biodiversity Monitoring and Detection: A Critical Challenge for the Twenty-First Century. , 2020, , 1-12.		8
49	Epilogue: Toward a Global Biodiversity Monitoring System. , 2020, , 519-526.		1
50	Linking Foliar Traits to Belowground Processes. , 2020, , 173-197.		4
51	Drought and freezing vulnerability of the isolated hybrid aspen <i>Populus x smithii</i> relative to its parental species, <i>P.Âtremuloides</i> and <i>P. grandidentata</i> . Ecology and Evolution, 2019, 9, 8062-8074.	0.8	8
52	Non-symbiotic soil microbes are more strongly influenced by altered tree biodiversity than arbuscular mycorrhizal fungi during initial forest establishment. FEMS Microbiology Ecology, 2019, 95, .	1.3	3
53	Residential household yard care practices along urban-exurban gradients in six climatically-diverse U.S. metropolitan areas. PLoS ONE, 2019, 14, e0222630.	1.1	19
54	Contribution of nonâ€native plants to the phylogenetic homogenization of U.S. yard floras. Ecosphere, 2019, 10, e02638.	1.0	24

#	Article	IF	CITATIONS
55	Diversification, adaptation, and community assembly of the American oaks (<i>Quercus</i>), a model clade for integrating ecology and evolution. New Phytologist, 2019, 221, 669-692.	3.5	168
56	Climate and lawn management interact to control C4plant distribution in residential lawns across seven U.S. cities. Ecological Applications, 2019, 29, e01884.	1.8	8
57	Traits linked with species invasiveness and community invasibility vary with time, stage and indicator of invasion in a longâ€term grassland experiment. Ecology Letters, 2019, 22, 593-604.	3.0	103
58	Detecting prairie biodiversity with airborne remote sensing. Remote Sensing of Environment, 2019, 221, 38-49.	4.6	72
59	Neighborhood diversity simultaneously increased and decreased susceptibility to contrasting herbivores in an early stage forest diversity experiment. Journal of Ecology, 2019, 107, 1492-1505.	1.9	22
60	Drivers of plant species richness and phylogenetic composition in urban yards at the continental scale. Landscape Ecology, 2019, 34, 63-77.	1.9	31
61	Consequences of biodiversity shift across phylogenetic scales for aspen and willow growth, survival, and herbivory. Journal of Vegetation Science, 2019, 30, 301-311.	1.1	3
62	Evolutionary potential varies across populations and traits in the neotropical oak Quercus oleoides. Tree Physiology, 2019, 39, 427-439.	1.4	14
63	Mapping foliar functional traits and their uncertainties across three years in a grassland experiment. Remote Sensing of Environment, 2019, 221, 405-416.	4.6	89
64	Genomic Identity of White Oak Species in an Eastern North American Syngameon. Annals of the Missouri Botanical Garden, 2019, 104, 455-477.	1.3	22
65	The role of diversification in community assembly of the oaks (<i>Quercus</i> L.) across the continental U.S American Journal of Botany, 2018, 105, 565-586.	0.8	50
66	A million and more trees for science. Nature Ecology and Evolution, 2018, 2, 763-766.	3.4	90
67	Soil abiotic variables are more important than Salicaceae phylogeny or habitat specialization in determining soil microbial community structure. Molecular Ecology, 2018, 27, 2007-2024.	2.0	44
68	Natural selection and neutral evolutionary processes contribute to genetic divergence in leaf traits across a precipitation gradient in the tropical oak Quercus oleoides. Molecular Ecology, 2018, 27, 2176-2192.	2.0	43
69	The spatial sensitivity of the spectral diversity–biodiversity relationship: an experimental test in a prairie grassland. Ecological Applications, 2018, 28, 541-556.	1.8	105
70	Remote sensing of biodiversity: Soil correction and data dimension reduction methods improve assessment of l±-diversity (species richness) in prairie ecosystems. Remote Sensing of Environment, 2018, 206, 240-253.	4.6	84
71	Synthesis and future research directions linking tree diversity to growth, survival, and damage in a global network of tree diversity experiments. Environmental and Experimental Botany, 2018, 152, 68-89.	2.0	113
72	Leafâ€level tradeâ€offs between drought avoidance and desiccation recovery drive elevation stratification in arid oaks. Ecosphere, 2018, 9, e02149.	1.0	28

#	Article	IF	CITATIONS
73	Community-wide consequences of variation in photoprotective physiology among prairie plants. Photosynthetica, 2018, 56, 455-467.	0.9	21
74	Influence of species richness, evenness, and composition on optical diversity: A simulation study. Remote Sensing of Environment, 2018, 211, 218-228.	4.6	53
75	Homogenization of plant diversity, composition, and structure in North American urban yards. Ecosphere, 2018, 9, e02105.	1.0	68
76	Sympatric parallel diversification of major oak clades in the Americas and the origins of Mexican species diversity. New Phytologist, 2018, 217, 439-452.	3.5	216
77	Resource availability underlies the plantâ€fungal diversity relationship in a grassland ecosystem. Ecology, 2018, 99, 204-216.	1.5	91
78	Patterns of Beta Diversity of Vascular Plants and Their Correspondence With Biome Boundaries Across North America. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	36
79	Plant spectral diversity integrates functional and phylogenetic components of biodiversity and predicts ecosystem function. Nature Ecology and Evolution, 2018, 2, 976-982.	3.4	185
80	Landâ€use tradeâ€offs between tree biodiversity and crop production in the Atlantic Forest. Conservation Biology, 2018, 32, 1074-1084.	2.4	8
81	A multi-city comparison of front and backyard differences in plant species diversity and nitrogen cycling in residential landscapes. Landscape and Urban Planning, 2018, 178, 102-111.	3.4	20
82	Revisiting the <scp>H</scp> oly <scp>G</scp> rail: using plant functional traits to understand ecological processes. Biological Reviews, 2017, 92, 1156-1173.	4.7	557
83	An experimental test of fitness variation across a hydrologic gradient predicts willow and poplar species distributions. Ecology, 2017, 98, 1311-1323.	1.5	14
84	Spatial complementarity in tree crowns explains overyielding in species mixtures. Nature Ecology and Evolution, 2017, 1, 63.	3.4	285
85	Global biogeography of seed dormancy is determined by seasonality and seed size: a case study in the legumes. New Phytologist, 2017, 214, 1527-1536.	3.5	112
86	Ecological homogenization of residential macrosystems. Nature Ecology and Evolution, 2017, 1, 191.	3.4	69
87	Continental-scale homogenization of residential lawn plant communities. Landscape and Urban Planning, 2017, 165, 54-63.	3.4	82
88	Using foliar spectral properties to assess the effects of drought on plant water potential. Tree Physiology, 2017, 37, 1582-1591.	1.4	36
89	Species richness and traits predict overyielding in stem growth in an earlyâ€successional tree diversity experiment. Ecology, 2017, 98, 2601-2614.	1.5	68
90	Predicting habitat affinities of plant species using commonly measured functional traits. Journal of Vegetation Science, 2017, 28, 1082-1095.	1.1	38

#	Article	IF	CITATIONS
91	Harnessing plant spectra to integrate the biodiversity sciences across biological and spatial scales. American Journal of Botany, 2017, 104, 966-969.	0.8	92
92	Evolutionary trade-offs between drought resistance mechanisms across a precipitation gradient in a seasonally dry tropical oak (Quercus oleoides). Tree Physiology, 2017, 37, 889-901.	1.4	60
93	American elm cultivars: Variation in compartmentalization of infection by <i>Ophiostoma novoâ€ulmi</i> and its effects on hydraulic conductivity. Forest Pathology, 2017, 47, e12369.	0.5	15
94	Balancing selection maintains diversity in a cold tolerance gene in broadly distributed live oaks. Genome, 2017, 60, 762-769.	0.9	10
95	Moving Towards a New Urban Systems Science. Ecosystems, 2017, 20, 38-43.	1.6	63
96	Photoprotective Mechanisms in the Genus Quercus in Response to Winter Cold and Summer Drought. Tree Physiology, 2017, , 361-391.	0.9	6
97	Physiological Evidence from Common Garden Experiments for Local Adaptation and Adaptive Plasticity to Climate in American Live Oaks (Quercus Section Virentes): Implications for Conservation Under Global Change. Tree Physiology, 2017, , 107-135.	0.9	26
98	Genetic, morphological, and spectral characterization of relictual Niobrara River hybrid aspens (<i>Populus</i> × <i>smithii</i>). American Journal of Botany, 2017, 104, 1878-1890.	0.8	14
99	Genomics meets remote sensing in global change studies: monitoring and predicting phenology, evolution and biodiversity. Current Opinion in Environmental Sustainability, 2017, 29, 177-186.	3.1	42
100	Observations, indicators and scenarios of biodiversity and ecosystem services change — a framework to support policy and decision-making. Current Opinion in Environmental Sustainability, 2017, 29, 198-206.	3.1	11
101	Population-Level Differentiation in Growth Rates and Leaf Traits in Seedlings of the Neotropical Live Oak Quercus oleoides Grown under Natural and Manipulated Precipitation Regimes. Frontiers in Plant Science, 2017, 8, 585.	1.7	37
102	Seasonal Variation in the NDVI–Species Richness Relationship in a Prairie Grassland Experiment (Cedar) Tj ETQo	0.0.0 rgB ⁻ 1.8	[/Overlock 1
103	Associations of Leaf Spectra with Genetic and Phylogenetic Variation in Oaks: Prospects for Remote Detection of Biodiversity. Remote Sensing, 2016, 8, 221.	1.8	132
104	Ectomycorrhizal fungal diversity and saprotrophic fungal diversity are linked to different tree community attributes in a fieldâ€based tree experiment. Molecular Ecology, 2016, 25, 4032-4046.	2.0	95
105	Plant nitrogen concentration and isotopic composition in residential lawns across seven US cities. Oecologia, 2016, 181, 271-285.	0.9	29
106	Convergence of microclimate in residential landscapes across diverse cities in the United States. Landscape Ecology, 2016, 31, 101-117.	1.9	78
107	Seed production timing influences seedling fitness in the tropical live oak <i>Quercus oleoides</i> of Costa Rican dry forests. American Journal of Botany, 2016, 103, 1407-1419.	0.8	16
108	Evolutionary Legacy Effects on Ecosystems: Biogeographic Origins, Plant Traits, and Implications for Management in the Era of Global Change. Annual Review of Ecology, Evolution, and Systematics, 2016, 47, 433-462.	3.8	73

#	Article	IF	CITATIONS
109	Taking the Long View: Integrating Recorded, Archeological, Paleoecological, and Evolutionary Data into Ecological Restoration. International Journal of Plant Sciences, 2016, 177, 90-102.	0.6	48
110	Monitoring plant functional diversity from space. Nature Plants, 2016, 2, 16024.	4.7	221
111	Satisfaction, water and fertilizer use in the American residential macrosystem. Environmental Research Letters, 2016, 11, 034004.	2.2	26
112	Soil moisture and chemistry influence diversity of ectomycorrhizal fungal communities associating with willow along an hydrologic gradient. FEMS Microbiology Ecology, 2016, 92, fiv148.	1.3	72
113	Ecosystem services in managing residential landscapes: priorities, value dimensions, and cross-regional patterns. Urban Ecosystems, 2016, 19, 95-113.	1.1	93
114	Commercial Plant Production and Consumption Still Follow the Latitudinal Gradient in Species Diversity despite Economic Globalization. PLoS ONE, 2016, 11, e0163002.	1.1	6
115	The hypothesis of sympatric speciation as the dominant generator of endemism in a global hotspot of biodiversity. Ecology and Evolution, 2015, 5, 5272-5283.	0.8	9
116	Historical introgression among the American live oaks and the comparative nature of tests for introgression. Evolution; International Journal of Organic Evolution, 2015, 69, 2587-2601.	1.1	193
117	Trade-offs in ecosystem services and varying stakeholder preferences: evaluating conflicts, obstacles, and opportunities. Ecology and Society, 2015, 20, .	1.0	114
118	Limited Pollen Dispersal Contributes to Population Genetic Structure but Not Local Adaptation in Quercus oleoides Forests of Costa Rica. PLoS ONE, 2015, 10, e0138783.	1.1	29
119	Contrasting effects of plant species traits and moisture on the decomposition of multiple litter fractions. Oecologia, 2015, 179, 573-584.	0.9	13
120	Inclusion of ecologically based trait variation in plant functional types reduces the projected land carbon sink in an earth system model. Global Change Biology, 2015, 21, 3074-3086.	4.2	94
121	A sustainability framework for assessing trade-offs in ecosystem services. Ecology and Society, 2015, 20, .	1.0	121
122	Climatic origins predict variation in photoprotective leaf pigments in response to drought and low temperatures in live oaks (Quercus series Virentes). Tree Physiology, 2015, 35, 521-534.	1.4	54
123	Ecosystem service trade-offs across global contexts and scales. Ecology and Society, 2015, 20, .	1.0	47
124	<i>pez</i> : phylogenetics for the environmental sciences. Bioinformatics, 2015, 31, 2888-2890.	1.8	146
125	Phylogeny and biogeography of the American live oaks (<i>Quercus</i> subsection <i>Virentes</i>): a genomic and population genetics approach. Molecular Ecology, 2015, 24, 3668-3687.	2.0	165
126	Trophic phylogenetics: evolutionary influences on body size, feeding, and species associations in grassland arthropods. Ecology, 2015, 96, 998-1009.	1.5	20

#	Article	IF	CITATIONS
127	Multi-scale phylogenetic structure in coastal dune plant communities across the globe. Journal of Plant Ecology, 2014, 7, 101-114.	1.2	37
128	Assessing the homogenization of urban land management with an application to US residential lawn care. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4432-4437.	3.3	164
129	Ecological homogenization of urban USA. Frontiers in Ecology and the Environment, 2014, 12, 74-81.	1.9	343
130	Convergent Surface Water Distributions in U.S. Cities. Ecosystems, 2014, 17, 685-697.	1.6	56
131	The evolution of seed dormancy: environmental cues, evolutionary hubs, and diversification of the seed plants. New Phytologist, 2014, 203, 300-309.	3.5	281
132	Which is a better predictor of plant traits: temperature or precipitation?. Journal of Vegetation Science, 2014, 25, 1167-1180.	1.1	323
133	Metrics and Models of Community Phylogenetics. , 2014, , 451-464.		23
134	A Framework Phylogeny of the American Oak Clade Based on Sequenced RAD Data. PLoS ONE, 2014, 9, e93975.	1.1	215
135	Molecular and morphological support for a Florida origin of the Cuban oak. Journal of Biogeography, 2013, 40, 632-645.	1.4	42
136	Phenological cues drive an apparent tradeâ€off between freezing tolerance and growth in the family Salicaceae. Ecology, 2013, 94, 1708-1717.	1.5	71
137	Sustainability and Biodiversity. , 2013, , 71-84.		11
138	Consequences of salinity and freezing stress for two populations of Quercus virginiana Mill. (Fagaceae) grown in a common garden ¹ . Journal of the Torrey Botanical Society, 2013, 140, 145-156.	0.1	6
139	Multiple <i>Ceratocystis smalleyi</i> Infections Associated with Reduced Stem Water Transport in Bitternut Hickory. Phytopathology, 2013, 103, 565-574.	1.1	23
140	Xanthophyll cycle pigment and antioxidant profiles of winter-red (anthocyanic) and winter-green (acyanic) angiosperm evergreen species. Journal of Experimental Botany, 2012, 63, 1895-1905.	2.4	54
141	Shocks to the system: community assembly of the oak savanna in a 40â€year fire frequency experiment. Ecology, 2012, 93, S52.	1.5	100
142	Habitat specialization and the role of trait lability in structuring diverse willow (genus <i>Salix</i>) communities. Ecology, 2012, 93, S138.	1.5	74
143	Synthesizing phylogenetic knowledge for ecological research. Ecology, 2012, 93, S4-S13.	1.5	52
144	Integrating ecology and phylogenetics: the footprint of history in modernâ€day communities ¹ . Ecology, 2012, 93, S1.	1.5	29

#	Article	IF	CITATIONS
145	Phylogenetic and functional characteristics of household yard floras and their changes along an urbanization gradient. Ecology, 2012, 93, S83.	1.5	115

Evidence for a freezing tolerance $\hat{a} \in \hat{s}$ growth rate trade $\hat{a} \in \hat{o}$ ff in the live oaks (<i>Quercus</i>series) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 10 Tf

147	Invasions: the trail behind, the path ahead, and a test of a disturbing idea. Journal of Ecology, 2012, 100, 116-127.	1.9	180
148	Maintenance of tree phylogenetic diversity in a highly fragmented rain forest. Journal of Ecology, 2012, 100, 702-711.	1.9	74
149	Quercus. , 2011, , 89-129.		46
150	Phylogeography and climatic niche evolution in live oaks (Quercus series Virentes) from the tropics to the temperate zone. Journal of Biogeography, 2011, 38, 962-981.	1.4	107
151	TRY – a global database of plant traits. Global Change Biology, 2011, 17, 2905-2935.	4.2	2,002
152	Native communities determine the identity of exotic invaders even at scales at which communities are unsaturated. Diversity and Distributions, 2011, 17, 35-42.	1.9	67
153	Southward Pleistocene migration of Douglasâ€fir into Mexico: phylogeography, ecological niche modeling, and conservation of †rear edge' populations. New Phytologist, 2011, 189, 1185-1199.	3.5	70
154	Pasture Recolonization by a Tropical Oak and the Regeneration Ecology of Seasonally Dry Tropical Forests. , 2011, , 221-237.		18
155	Contrasting drought survival strategies of sympatric willows (genus: Salix): consequences for coexistence and habitat specialization. Tree Physiology, 2011, 31, 604-614.	1.4	38
156	Phylogenetic community structure in Minnesota oak savanna is influenced by spatial extent and environmental variation. Ecography, 2010, 33, 565-577.	2.1	79
157	Phylogenetic patterns differ for native and exotic plant communities across a richness gradient in Northern California. Diversity and Distributions, 2010, 16, 892-901.	1.9	56
158	Phylogeography of Douglas-fir based on mitochondrial and chloroplast DNA sequences: testing hypotheses from the fossil record. Molecular Ecology, 2010, 19, 1877-1897.	2.0	83
159	Phylogeography's past, present, and future: 10 years after Avise, 2000. Molecular Phylogenetics and Evolution, 2010, 54, 291-301.	1.2	535
160	Using Phylogenetic, Functional and Trait Diversity to Understand Patterns of Plant Community Productivity. PLoS ONE, 2009, 4, e5695.	1.1	558
161	Changes in ectomycorrhizal community structure on two containerized oak hosts across an experimental hydrologic gradient. Mycorrhiza, 2009, 19, 133-142.	1.3	46
162	The merging of community ecology and phylogenetic biology. Ecology Letters, 2009, 12, 693-715.	3.0	1,795

#	Article	IF	CITATIONS
163	Molecular, morphological, and ecological niche differentiation of sympatric sister oak species, <i>Quercus virginiana</i> and <i>Q. geminata</i> (Fagaceae). American Journal of Botany, 2009, 96, 1690-1702.	0.8	97
164	Willow species (genus: Salix) with contrasting habitat affinities differ in their photoprotective responses to water stress. Functional Plant Biology, 2009, 36, 300.	1.1	28
165	Why are evergreen leaves so contrary about shade?. Trends in Ecology and Evolution, 2008, 23, 299-303.	4.2	193
166	Atmospheric and soil drought reduce nocturnal conductance in live oaks. Tree Physiology, 2007, 27, 611-620.	1.4	96
167	Chilling and freezing stress in live oaks (Quercus section Virentes): intra- and inter-specific variation in PS II sensitivity corresponds to latitude of origin. Photosynthesis Research, 2007, 94, 437-53.	1.6	39
168	PHYLOGENETIC STRUCTURE OF FLORIDIAN PLANT COMMUNITIES DEPENDS ON TAXONOMIC AND SPATIAL SCALE. Ecology, 2006, 87, S109-S122.	1.5	460
169	Summer and winter sensitivity of leaves and xylem to minimum freezing temperatures: a comparison of coâ€occurring Mediterranean oaks that differ in leaf lifespan. New Phytologist, 2005, 168, 597-612.	3.5	105
170	Impacts of Freezing on Long Distance Transport in Woody Plants. , 2005, , 401-424.		55
171	The growth respiration component in eddy CO2 flux from a Quercus ilex mediterranean forest. Global Change Biology, 2004, 10, 1460-1469.	4.2	99
172	The Cohesionâ€Tension Theory. New Phytologist, 2004, 163, 451-452.	3.5	68
173	The worldwide leaf economics spectrum. Nature, 2004, 428, 821-827.	13.7	6,489
174	Phylogenetic Overdispersion in Floridian Oak Communities. American Naturalist, 2004, 163, 823-843.	1.0	738
175	MULTIPLE TRAIT ASSOCIATIONS IN RELATION TO HABITAT DIFFERENTIATION AMONG 17 FLORIDIAN OAK SPECIES. Ecological Monographs, 2004, 74, 635-662.	2.4	258
176	From Leaves to Ecosystems: Using Chlorophyll Fluorescence to Assess Photosynthesis and Plant function in Ecological Studies. Advances in Photosynthesis and Respiration, 2004, , 737-755.	1.0	49
177	INTEGRATING MICRO- AND MACROEVOLUTIONARY PROCESSES IN COMMUNITY ECOLOGY. Ecology, 2003, 84, 592-597.	1.5	79
178	Remote Sensing of Solar-excited Plant Fluorescence as a Measure of Photosynthetic Rate. Photosynthetica, 2002, 40, 127-132.	0.9	40
179	Hydraulic properties and freezing-induced cavitation in sympatric evergreen and deciduous oaks with contrasting habitats. Plant, Cell and Environment, 2001, 24, 1243-1256.	2.8	134
180	Consequences of CO2 and light interactions for leaf phenology, growth, and senescence in Quercus rubra. Global Change Biology, 2000, 6, 877-887.	4.2	35

#	Article	IF	CITATIONS
181	Changes in drought response strategies with ontogeny in Quercus rubra: implications for scaling from seedlings to mature trees. Oecologia, 2000, 124, 8-18.	0.9	298
182	Consequences of incongruency in diurnally varying resources for seedlings of Rumex crispus (Polygonaceae). American Journal of Botany, 1998, 85, 1216-1223.	0.8	0
183	BII-Implementation: The causes and consequences of plant biodiversity across scales in a rapidly changing world. Research Ideas and Outcomes, 0, 7, .	1.0	5
184	Adaptive variation among oaks in wood anatomical properties is shaped by climate of origin and shows limited plasticity across environments. Functional Ecology, 0, , .	1.7	9